q_metadata | R Documentation |
This function gives the vocabulary used for the quantitative metadata of each entity in each condition.
This function is based on the qMetadata dataframe to look for either missing values (used to update an initial dataset) or imputed values (used when post processing protein qMetadata after aggregation)
In the quantitative columns, a missing value is identified by no value rather than a value equal to 0. Conversion rules Quanti Tag NA or 0 NA
In the quantitative columns, a missing value is identified by no value rather than a value equal to 0. Conversion rules Initial conversion rules for maxquant
|————–|—————–|—–|
Quanti | PSM count | Tag |
== 0 | N.A. | whatever |
> 0 | > 0 | 1.1 |
> 0 | == 0 | 1.2 |
> 0 | unknown col | 1.0 |
-------------- | ----------------- | ----- |
Initial conversion rules for maxquant |————|———————–|——–|
Quanti | Identification | Tag |
== 0 | whatever | 2.0 |
> 0 | 'By MS/MS' | 1.1 |
> 0 | 'By matching' | 1.2 |
> 0 | unknown col | 1.0 |
------------ | ----------------------- | -------- |
Similar to the function is.na
but focused on the equality with
the paramter 'type'.
Update the quantitative metadata information of missing values that were imputed
Gives all the tags of the metadata vocabulary containing the pattern (parent and all its children).
Agregation rules for the cells quantitative metadata of peptides.
Please refer to the qMetadata.def vocabulary in qMetadata.def()
qMetadata.def(level = "all") custom_qMetadata_colors() Set_POV_MEC_tags(conds, df, level) BuildqMetadata(from = NULL, level, qdata = NULL, conds = NULL, df = NULL) qMetadata_generic(qdata, conds, level) qMetadata_proline(qdata, conds, df, level = NULL) qMetadata_maxquant(qdata, conds, df, level = NULL) match.qMetadata(df, pattern, level) ## S4 method for signature 'SummarizedExperiment' UpdateqMetadata(object, from, to, ...) search.qMetadata.tags(pattern, level, depth = "1") qMetadata_combine(met, level)
level |
xxx |
conds |
xxx |
df |
A data.frame |
from |
xxx |
qdata |
A matrix of quantitative data |
pattern |
The string to search. |
object |
xxx |
to |
xxx |
... |
xxx |
depth |
xxx |
met |
xxx |
A data.frame containing the different tags and corresponding colors for the level given in parameter
An instance of class MSnSet
.
xxxxx
xxxxx
xxxxx
xxxxx
A boolean dataframe
NA
NA
Peptide-level vocabulary
|– 1.0 Quantitative Value | | | |– 1.1 Identified (color 4, white) | | | |– 1.2 Recovered (color 3, lightgrey) | |– 2.0 Missing value (no color) | | | |– 2.1 Missing POV (color 1) | | | |– 2.2 Missing MEC (color 2) | |– 3.0 Imputed value | | | |– 3.1 Imputed POV (color 1) | | | |– 3.2 Imputed MEC (color 2)
Protein-level vocabulary:
|– 1.0 Quantitative Value | | | |– 1.1 Identified (color 4, white) | | | |– 1.2 Recovered (color 3, lightgrey) | |– 2.0 Missing value | | | |– 2.1 Missing POV (color 1) | | | |– 2.2 Missing MEC (color 2) | |– 3.0 Imputed value | | | |– 3.1 Imputed POV (color 1) | | | |– 3.2 Imputed MEC (color 2) | |– 4.0 Combined value (color 3bis, light-lightgrey)
A generic conversion
Conversion for Proline datasets
Conversion from Maxquant datasets
Agregation of non imputed values (2.X) with quantitative values
(1.0, 1.X, 3.0, 3.X) |
Not possible |
---------------------------- |
Agregation of different types of missing values (among 2.1, 2.2) |
Agregation of 2.1 peptides between each other gives a missing value non imputed (2.0)
Agreagtion of 2.2 peptides between each other givesa missing value non imputed (2.0)
Agregation of a mix of 2.1 and 2.2 gives a missing value non imputed (2.0) |—————————-
Agregation of a mix of quantitative values (among 1.0, 1.1, 1.2, 3.0, 3.X) |
if the type of all the peptides to agregate is 1.0, 1.1 or 1.2, then the final metadata is set the this tag
if the set of metacell to agregate is a mix of 1.0, 1.1 or 1.2, then the final metadata is set to 1.0
if the set of metacell to agregate is a mix of 3.X and 3.0, then the final metadata is set to 3.0
if the set of metacell to agregate is a mix of 3.X and 3.0 and other (X.X), then the final metadata is set to 4.0 |—————————-
Update metacell with POV/MEC status for the categories 2.0 and 3.0 TODO
Thomas Burger, Samuel Wieczorek
Samuel Wieczorek
Samuel Wieczorek
Samuel Wieczorek
Samuel Wieczorek
Samuel Wieczorek
Samuel Wieczorek
Samuel Wieczorek
Samuel Wieczorek
#----------------------------------------------- # A shiny app to view color legends #----------------------------------------------- if(interactive()){ data(ft) ui <- mod_qMetadataLegend_ui("legend") server <- function(input, output, session) { mod_qMetadataLegend_server('legend', object = reactive({ft[[1]]})) } shinyApp(ui = ui, server = server) } data(ft_na) df <- assay(ft_na, 2) level <- typeDataset(ft_na, 1) df <- Set_POV_MEC_tags(ft_na, 1, level) file <- system.file("extdata", "Exp1_R25_pept.txt", package="DaparToolshedData") data <- read.table(file, header=TRUE, sep="\t",stringsAsFactors = FALSE) metadataFile <- system.file("extdata", "samples_Exp1_R25.txt", package="DaparToolshedData") metadata <- read.table(metadataFile, header=TRUE, sep="\t", as.is=TRUE, stringsAsFactors = FALSE) conds <- metadata$Condition qdata <- data[,56:61] df <- data[ , 43:48] df <- BuildqMetadata('maxquant', 'peptide', qdata, conds, df) df <- BuildqMetadata('proline', 'peptide', qdata, conds, df) file <- system.file("extdata", "Exp1_R25_pept.txt", package="DaparToolshedData") data <- read.table(file, header=TRUE, sep="\t",stringsAsFactors = FALSE) metadataFile <- system.file("extdata", "samples_Exp1_R25.txt", package="DaparToolshedData") metadata <- read.table(metadataFile, header=TRUE, sep="\t", as.is=TRUE, stringsAsFactors = FALSE) conds <- metadata$Condition qdata <- data[seq_len(100), seq(56, 61)] df <- data[seq_len(100) , seq(43,48)] df <- qMetadata_generic(qdata, conds, 'peptide') file <- system.file("extdata", "Exp1_R25_pept.txt", package="DaparToolshedData") data <- read.table(file, header=TRUE, sep="\t",stringsAsFactors = FALSE) metadataFile <- system.file("extdata", "samples_Exp1_R25.txt", package="DaparToolshedData") metadata <- read.table(metadataFile, header=TRUE, sep="\t", as.is=TRUE, stringsAsFactors = FALSE) conds <- metadata$Condition qdata <- data[seq_len(100), seq(56, 61)] df <- data[seq_len(100) , seq(43, 48)] df <- qMetadata_proline(qdata, conds, df, 'peptide') file <- system.file("extdata", "Exp1_R25_pept.txt", package="DaparToolshedData") data <- read.table(file, header=TRUE, sep="\t",stringsAsFactors = FALSE) metadataFile <- system.file("extdata", "samples_Exp1_R25.txt", package="DaparToolshedData") metadata <- read.table(metadataFile, header=TRUE, sep="\t", as.is=TRUE, stringsAsFactors = FALSE) conds <- metadata$Condition qdata <- data[seq_len(10),seq(56, 61)] df <- data[seq_len(10) , seq(43, 48)] df2 <- qMetadata_maxquant(qdata, conds, df, 'peptide') data(ft) obj <- ft[[1]] metadata <- qMetadata(obj) m <- match.qMetadata(metadata, "missing", 'peptide') obj <- Exp1_R25_pept[seq_len(10),] obj[[2]] <- UpdateqMetadata(obj[[2]], 'missing', 'imputed') search.qMetadata.tags('missing POV', 'peptide') search.qMetadata.tags('quanti', 'peptide') ## Not run: ll <- qMetadata.def('peptide')$node for (i in 1:length(ll)) test <- lapply(combn(ll, i, simplify = FALSE), function(x) tag <- qMetadata_combine(x, 'peptide')) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.