# test_that("analyze_representatives can detect incorrect parameters correctly",{
#
# skip_if_not_installed("TDA")
#
# D = data.frame(dimension = c(0),birth = c(0),death = c(1))
# expect_error(analyze_representatives(diagrams = list(),dim = 1,num_points = 10),"2")
# expect_error(analyze_representatives(diagrams = 5,dim = 1,num_points = 10),"list")
# expect_error(analyze_representatives(diagrams = list(D,D,D),dim = -1,num_points = 10),"at least one")
# expect_error(analyze_representatives(diagrams = list(D,D,D),dim = 1,num_points = 3),"4")
#
# expect_error(analyze_representatives(diagrams = list(D,D,D),dim = 1,num_points = 4,return_contributions = "F"),"logical")
# expect_error(analyze_representatives(diagrams = list(D,D,D),dim = 1,num_points = 4,return_contributions = c(F,T)),"single")
# expect_error(analyze_representatives(diagrams = list(D,D,D),dim = 1,num_points = 4,return_contributions = NULL),"NULL")
# expect_error(analyze_representatives(diagrams = list(D,D,D),dim = 1,num_points = 4,return_contributions = NA),"NA")
#
# expect_error(analyze_representatives(diagrams = list(D,D,D),dim = 1,num_points = 4,plot_heatmap = "F"),"logical")
# expect_error(analyze_representatives(diagrams = list(D,D,D),dim = 1,num_points = 4,plot_heatmap = c(F,T)),"single")
# expect_error(analyze_representatives(diagrams = list(D,D,D),dim = 1,num_points = 4,plot_heatmap = NULL),"NULL")
# expect_error(analyze_representatives(diagrams = list(D,D,D),dim = 1,num_points = 4,plot_heatmap = NA),"NA")
#
# expect_error(analyze_representatives(diagrams = list(D,D,2),dim = 1,num_points = 4),"diagram")
# expect_error(analyze_representatives(diagrams = list(D,D,D),dim = 1,num_points = 4),"Representative")
# expect_error(analyze_representatives(diagrams = list(list(D,representatives = 2),D,D),dim = 1,num_points = 4),"list")
# expect_error(analyze_representatives(diagrams = list(list(D,representatives = list(matrix(data = c(1.1,2),nrow = 1))),D,D),dim = 1,num_points = 4),"integer")
# expect_error(analyze_representatives(diagrams = list(list(D,representatives = list(matrix(data = c(1,5),nrow = 1))),D,D),dim = 1,num_points = 4),"num_points")
# expect_error(analyze_representatives(diagrams = list(list(D,representatives = list(matrix(data = c(1,4),nrow = 1))),D,D),dim = 1,num_points = 4),"diagram")
#
# circs_ripsDiag <- lapply(X = 1:10,FUN = function(X){
#
# return(TDA::ripsDiag(X = as.matrix(dist(TDA::circleUnif(n = 25))),maxdimension = 1,maxscale = 2,library = "dionysus",location = T,dist = "arbitrary"))
#
# })
# expect_error(analyze_representatives(diagrams = circs_ripsDiag,dim = 1,num_points = 25,boxed_reps = NA),"boxed_reps")
# expect_error(analyze_representatives(diagrams = circs_ripsDiag,dim = 1,num_points = 25,boxed_reps = data.frame()),"two")
# expect_error(analyze_representatives(diagrams = circs_ripsDiag,dim = 1,num_points = 25,boxed_reps = data.frame(diagrams = c(1),reps = c(1))),"rep")
#
# expect_error(analyze_representatives(diagrams = circs_ripsDiag,dim = 1,num_points = 25,lwd = "2",boxed_reps = data.frame(diagram = c(1),rep = c(1))),"numeric")
# expect_error(analyze_representatives(diagrams = circs_ripsDiag,dim = 1,num_points = 25,lwd = c(1,2),boxed_reps = data.frame(diagram = c(1),rep = c(1))),"single")
# expect_error(analyze_representatives(diagrams = circs_ripsDiag,dim = 1,num_points = 25,lwd = 0,boxed_reps = data.frame(diagram = c(1),rep = c(1))),"positive")
# expect_error(analyze_representatives(diagrams = circs_ripsDiag,dim = 1,num_points = 25,lwd = NA,boxed_reps = data.frame(diagram = c(1),rep = c(1))),"NA")
# expect_error(analyze_representatives(diagrams = circs_ripsDiag,dim = 1,num_points = 25,lwd = Inf,boxed_reps = data.frame(diagram = c(1),rep = c(1))),"finite")
#
# expect_error(analyze_representatives(diagrams = circs_ripsDiag,dim = 1,num_points = 25,title = NaN),"NaN")
# expect_error(analyze_representatives(diagrams = circs_ripsDiag,dim = 1,num_points = 25,title = 1),"character")
# expect_error(analyze_representatives(diagrams = circs_ripsDiag,dim = 1,num_points = 25,title = c("1","2")),"single")
#
# expect_error(analyze_representatives(diagrams = list(D,D,D),dim = 1,num_points = 4,return_clust = "F"),"logical")
# expect_error(analyze_representatives(diagrams = list(D,D,D),dim = 1,num_points = 4,return_clust = c(F,T)),"single")
# expect_error(analyze_representatives(diagrams = list(D,D,D),dim = 1,num_points = 4,return_clust = NULL),"NULL")
# expect_error(analyze_representatives(diagrams = list(D,D,D),dim = 1,num_points = 4,return_clust = NA),"NA")
#
# expect_error(analyze_representatives(diagrams = circs_ripsDiag,dim = 1,num_points = 25,d = matrix(data = 0,nrow = 2,ncol = 2)),"dist")
# expect_error(analyze_representatives(diagrams = circs_ripsDiag,dim = 1,num_points = 25,d = stats::dist(matrix(data = 0,nrow = 2,ncol = 2))),"rows")
#
# })
# test_that("analyze_representatives is computing properly",{
#
# skip_on_cran()
# skip_if_not_installed("TDA")
# skip_if(T)
#
# ripser <- import_ripser()
#
# circs_ripsDiag <- lapply(X = 1:10,FUN = function(X){
#
# return(TDA::ripsDiag(X = as.matrix(dist(TDA::circleUnif(n = 25))),maxdimension = 1,maxscale = 2,library = "dionysus",location = T,dist = "arbitrary"))
#
# })
# circs_PyH <- lapply(X = 1:10,FUN = function(X){
#
# return(PyH(X = as.matrix(dist(TDA::circleUnif(n = 25))),maxdim = 1,thresh = 2,ripser = ripser,calculate_representatives = T,distance_mat = T))
#
# })
# circs_ripsDiag_boot <- lapply(X = 1:10,FUN = function(X){
#
# return(bootstrap_persistence_thresholds(X = as.matrix(dist(TDA::circleUnif(n = 25))),maxdim = 1,thresh = 2,distance_mat = T,calculate_representatives = T,FUN_diag = "ripsDiag",return_subsetted = T))
#
# })
# circs_PyH_boot <- lapply(X = 1:10,FUN = function(X){
#
# return(bootstrap_persistence_thresholds(X = as.matrix(dist(TDA::circleUnif(n = 25))),maxdim = 1,thresh = 2,distance_mat = T,calculate_representatives = T,FUN_diag = "PyH",ripser = ripser,return_subsetted = T))
#
# })
#
# tryCatch(expr = {check1 <- analyze_representatives(circs_ripsDiag,dim = 1,num_points = 25,plot_heatmap = F)},
# error = function(err){
# a <- 1
# },
# finally = {
# if(exists("check1")){expect_identical(dim(check1)[[2]],25L)}
# })
#
# tryCatch(expr = {check2 <- analyze_representatives(circs_PyH,dim = 1,num_points = 25,plot_heatmap = F)},
# error = function(err){
# a <- 1
# },
# finally = {
# if(exists("check2")){expect_identical(dim(check2)[[2]],25L)}
# })
#
# tryCatch(expr = {check3 <- analyze_representatives(circs_ripsDiag_boot,dim = 1,num_points = 25,plot_heatmap = F)},
# error = function(err){
# a <- 1
# },
# finally = {
# if(exists("check3")){expect_identical(dim(check3)[[2]],25L)}
# })
#
# tryCatch(expr = {check4 <- analyze_representatives(circs_PyH_boot,dim = 1,num_points = 25,plot_heatmap = F)},
# error = function(err){
# a <- 1
# },
# finally = {
# if(exists("check4")){expect_identical(dim(check4)[[2]],25L)}
# })
#
# tryCatch(expr = {check5 <- analyze_representatives(circs_PyH_boot,dim = 1,num_points = 25,plot_heatmap = F,return_contributions = T)},
# error = function(err){
# a <- 1
# },
# finally = {
# if(exists("check5")){expect_identical(length(check5$contributions),25L)}
# })
#
# expect_error(analyze_representatives(circs_PyH_boot,dim = 2,num_points = 25,plot_heatmap = F,return_contributions = T),"dimension")
#
# circs <- lapply(X = 1:10,FUN = function(X){
#
# return(TDA::circleUnif(n = 25,r = 1))
#
# })
# circs_PH <- lapply(X = circs,FUN = function(X){
#
# TDA::ripsDiag(X = as.matrix(dist(X)),maxdimension = 1,maxscale = 2,library = "dionysus",location = T,dist = "arbitrary")
#
# })
# d <- matrix(data = 0,nrow = length(circs),ncol = length(circs))
# r <- abs(stats::rnorm(45))
# d[which(upper.tri(d),arr.ind = T)] <- r
# d[which(upper.tri(d),arr.ind = T)[,c("col","row")]] <- r
# d <- stats::as.dist(d)
# check6 <- analyze_representatives(circs_PH,dim = 1,num_points = 25,plot_heatmap = T,d = d)
# expect_identical(ncol(check6),25L)
#
# })
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.