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1 Introduction

kernelPopis a software environment for simulating population genetics in a explicitly spatial manner. It is
a discrete-time and individual-based. This software provides flexibility at several levels of organization.
From general to narrow these include: Landscapes, habitats, populations, individuals, and loci. ker-
nelPopimplements this structure for a single species using a single list-based data structure in R. The
vast majority of functions either help create or modify this structure or to extract information from it.

Using the set of tools provided with KernelPop along with R, it is possible to define and execute almost
any demographic scenario that can be implemented in discrete-time. The actual simulations are carried out
in C++ to increase speed.

1.1 Comparison to other software

At least two other packages offer a generic simulation environment for neutral population genetics, EASYPOP
and Rmetasim. Table 1 summarizes these differences. In short,EASYPOP is faster and simpler to use, but does
not include as much ecological realism as kernelPop.

2 Landscape object

Figure 1 illustrates the high-level organization of a landscape object. The following subsections will document
the different sub-components.

Each will:

• describe the sub-object

• describe the function(s) used to create it

The first step in creating a landscape object is to create a skeleton landscape

> land <- landscape.new.empty()

> names(land)

[1] "intparam" "switchparam" "floatparam" "demography" "loci"
[6] "expression" "individuals"
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Table 1: Comparison between three individual-based simulators for population genetics. †These features
are implemented through the demographic matrix parameterization of Rmetasim and kernelPop. §There
are many R packages designed to estimate population genetic parameters including: ape, ade4, genetics,
geneland, and hierfst. Because both Rmetasim and kernelPop can be simulated a generation at a time, it is
possible to create quite elaborate selection schemes using R-code modifications of landscape objects

EASYPOP Rmetasim kernelPop
Within-population
demography

Zygote-Adult Stage- or age-based, over-
lapping generations

Stage- or age-based, over-
lapping generations

Population structure patchy patchy patchy or continuous
Patch quality constant variable variable
Dispersal kernels among populations, expo-

nential
among populations† among and within popula-

tions, determined by choices
among several PDFs

Classical dispersal
models

island, stepping-stone island, stepping stone, mi-
gration matrix

island, stepping-stone, mi-
gration matrix combined
with cell above

Dispersal Stage zygote male gametes and/or any
diploid life-stage

male gametes and/or any
diploid life-stage

Dispersal parameters vary among populations vary among individual de-
mographic stages and pop-
ulations

vary among individual de-
mographic stages and pop-
ulations

Metapopulation
parameters

constant, equal, population
sizes

Density-dependent or hard
carrying capacity varies
among patches; extinction
rate varies among patches

Density-dependent or hard
carrying capacity varies
among patches; extinction
rate varies among patches

Genealogy Complete retrievable Single-generation Single-generation
Mating systems selfing, random, monogamy,

polygyny
selfing,random,
monogamy†, polygyny†

selfing,random,
monogamy†, polygyny†

Sexuality haploid, haplodiploid,
hermaphrodite, dioecious

hermaphrodite, dioecious† hermaphrodite, dioecious†

Clonal reproduction yes no no
Recombination variable recombination for

diploid loci, recombination
possible among haploid loci

unlinked diploid loci, no re-
combination among haploid
loci

unlinked diploid loci, no re-
combination among haploid
loci

Mutation models Strict stepwise, k-allele,
mixtures between step-
wise and k-allele, mixtures
between two stepwise

Strict stepwise, infinte al-
lele, k-allele, sequence

Strict stepwise, infinte al-
lele, k-allele, sequence

Selection no Can be implemented in R Can be implemented in R
Output formats Arlequin, GenPop FSTAT Arlequin, GenePop, GDA,

migrate, R§
Arlequin, GenePop, GDA,
migrate, fdist, R§

Numbers of parame-
ters

lower moderate higher
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Individual locations, stage,

Boolean parameters
Multiple paternity, 
random choice of local
demography

Integer parameters
Number of habitats, 
number of loci, number
of demographic stages ...

Demography

population sizes, extinction
Stage−transition matrices

rates...

Landscape object

Floating point parameters

Selfing rate, dispersal 
kernel parameters

Inheritance, mutation rate,
mutation model, allele 
lookup table

Loci

Individuals

age, and genotypes

Figure 1: Schematic of the high-level organization of the landscape object

2.1 intparam

The intparam element of the landscape object describes integer values, they include:

habitats (h) This parameter provides the number of rectangular habitats within a landscape. These habi-
tats may or may not be populated.

stages (s) The number of demographic stages present in a single habitat.

locusnum The number of genetic loci to be simulated (not changeable directly)

numepochs It is possible to have multiple epochs during the course of a simulation. This can be im-
plemented either in R by the investigator (recommended) or in C++ by specifying multiple epochs
sub-objects. numepochs specifies the number of these to be used in C++. (not changeable directly)

currentgen (cg) Current generation (year) of a simulation (best to leave unchanged)

currentepoch (ce) Current epoch (leave unchanged)

totalgens (totgen) Total number of generations that can be simulated

numdemos The number of different within-habitat demographies. These can vary across a landscape. (not
changeable directly)

maxlandsize (maxland) Total number of individuals that can be simulated

nphen (np) not used yet.

The args() provides the default values for this function1.
1All code in this document should be available in annotated form in the file kernelPop-intro.R distributed with this pdf. If

you source it into R it will execute the code and produce similar results. If you set ’par(ask=T)’ before ’sourcing’, the graphs
(and subsequent steps!) will wait for you to hit return
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> args(landscape.new.intparam)

function (rland, h = 1, s = 1, cg = 0, ce = 0, totgen = 1000,
maxland = 2e+05, np = 0)

NULL

> land <- landscape.new.intparam(land, h = 4, s = 6)

Note that this function takes a landscape object (in this case, skeleton) as one of its parameters. It
returns the modified landscape. This is typical for the landscape creation and modification functions

2.2 floatparams

These are parameters describe selfing rate (s) and then a set of dispersal characteristics that will apply to
all stages in the simulation

selfing (s) Selfing rate in a mixed-mating model

seedmu Scale of first seed dispersal distribution

seedshape Shape of first seed dispersal distribution

pollenmu Scale of first pollen dispersal distribution

pollenshape Shape of first pollen dispersal distribution

seedmu2 Scale of second seed dispersal distribution

seedshape2 Shape of second seed dispersal distribution

seedmix mixture parameter between the two seed distributions (1=all dist 1, 0=all dist 2)

aspect Factor that reduces the y-dimension of dispersal. A value of 1 is equal x and y dispersal. This does
not change the dispersal distances, however, just their direction

pollenmu2 Scale of second pollen dispersal distribution

pollenshape2 Shape of second pollen dispersal distribution

pollenmix mixture parameter between the two pollen distributions (1=all dist 1, 0=all dist 2)

> args(landscape.new.floatparam)

function (rland, s = 0, seedscale = c(10, 10), seedshape = c(10,
10), seedmix = 1, pollenscale = c(2, 10), pollenshape = c(2,
6), pollenmix = 1, asp = 1, mindens = 1e-25)

NULL

> land <- landscape.new.floatparam(land)
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2.3 switchparam

These are boolean parameters that make choices about a landscape

randepoch If 0, choose different epochs in the order they are specified. If 1 choose epochs at random (again
multiple epochs are kind of obsolete, but are built into the basic C++ engine) (don’t change)

randdemo If there are multiple local demographies for different habitats, choose among them at random
for each habitat if 1; if 0, assign them in the same order as the habitats are defined.

multp If 1 each zygote potentially has a different father (slower). If 0 all offspring for a mother in a
particular year are full-sibs

> args(landscape.new.switchparam)

function (rland, re = 0, rd = 0, mp = 1)
NULL

> land <- landscape.new.switchparam(land)

2.4 demography

This sub-object basically defines all of the vital rates that determine survival and reproduction. It also con-
tains functions that define metapopulation characteristics like extinction rate per habitat, carrying capacity
per habitat and dispersal parameters.

It is divided into two subcomponents, each of which is further divided.

2.4.1 localdem

This is a description of the sub-matrices that define demography in each habitat. It is a list of any length
between 1 and the number of habitats. Depending on the value of randdemo in the switch subcomponent,
each habitat is either: 1) randomly assigned an element from this list with probabilities that can be defined
in the epochs sub object (sec. 2.4.2) or 2) assigned demographies by cycling through this list.

Each element is composed of three matrices that describe a stage based demography. Figure

> S <- matrix(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.18, 0, 0,

+ 0, 0, 0, 0, 0.14, 0, 0.26, 0, 0, 0, 0, 0.7, 0, 0.09, 0, 0,

+ 0, 0, 0.2, 0, 0.18), byrow = T, nrow = 6)

> R <- matrix(c(0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 8.5, 0, 0, 0, 0,

+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

+ 0, 0), byrow = T, nrow = 6)

> M <- matrix(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.25, 0, 0.75, 0, 0, 0,

+ 0, 0, 0), byrow = T, nrow = 6)

> args(landscape.new.local.demo)

function (rland, S, R, M)
NULL

> land <- landscape.new.local.demo(land, S, R, M)

> print("add a new local demography with different Reproduction")

[1] "add a new local demography with different Reproduction"
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Figure 2: Stage-based demography within habitats. This life-cycle has six stages, essentially three male
and three female stages. The rates of male and female survival are different (for example, intermediate
sized females (stage 3) have high probabilities of growing into adults in the next season). Females produce
a mean of 10 and 5.5 male and female juveniles per generation, respectively. These are means of Poisson
distributions. Both stage 4 and stage 5 can produce pollen though stage 6 produces three times the pollen
on average.
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> R2 <- matrix(c(0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 5.5, 0, 0, 0, 0,

+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

+ 0, 0), byrow = T, nrow = 6)

> land <- landscape.new.local.demo(land, S, R2, M)

The previous code block installed two local demographies into the localdem list.

2.4.2 epochs

This is a list of elements each of which define landscape-level characteristics. Currently my recommendation
is to declare only 1 and modify it in R to change simulations through time.

Landscape demographic characteristics The matrices defined in section 2.4.1 comprise sub-matrices
of 3 larger matrices that are (number of habitats)*(number of stages) in dimension This is similar to a multi
regional model. Figure may help illustrate this concept, though it has the reproduction and survival matrices
summed into a single matrix.

These matrices can implement dispersal among populations independent of the dispersal kernels defined
in the next paragraphs. I wanted to maintain this ability because it provides a convenientt way to model
management efforts like transplants, introductions, and stocking efforts.

For most uses of kernelPop, these matrices can be set to zero in each cell. They still need to be defined,
however. The matrix zeromat will be used for each of the three landscape matrices

> zeromat <- matrix(0, nrow = 4 * 6, ncol = 4 * 6)

Vectors describing habitats within a landscape Vectors with length equal to the number of habitats
are defined in this sub-element to characterize:

extinction the yearly rate of extinction of each habitat

carrying capacity the largest number of individuals supported in each habitat

> extnct <- c(0, 0.1, 0, 0.1)

> k <- c(1000, 600, 600, 1000)

Vectors with length equal to the length of the local demography describe the probability of picking a
local demography from the localdem list. Always defined, but only used if randdemo (section 2.3) is set
appropriately.

> ldem <- c(0.5, 0.5)

Seed dispersal kernel matrix This is a matrix that has (number of habitats)*(number of stages) rows
and six columns. If not specified, a working matrix is constructed from the floatparam elements

The rows correspond to stages in the landscape. The columns correspond to (in order)

1. the seed dispersal kernel. This can be 1,2, or 3 (the default). 1 and 2 are really just special cases of
the mixed pdf (kernel 3)

2. the scale parameter for kernel component 1

3. the shape parameter for kernel component 1

4. the scale parameter for kernel component 2

5. the shape parameter for kernel component 2
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6. the mixing parameter. Ranges from 0 to 1. If 1 dispersal is determined solely by kernel 1. If 0, dispersal
is determined solely by kernel 2. Intermediate values represent a mixture.

> sk <- matrix(0, nrow = 4 * 6, ncol = 6)

> sk[, 1] <- rep(3, 4 * 6)

> sk[, 2] <- rep(10, 4 * 6)

> sk[, 3] <- rep(1.1, 4 * 6)

> sk[, 4] <- rep(100, 4 * 6)

> sk[, 5] <- rep(50, 4 * 6)

> sk[, 6] <- rep(0.5, 4 * 6)

> sk

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 3 10 1.1 100 50 0.5
[2,] 3 10 1.1 100 50 0.5
[3,] 3 10 1.1 100 50 0.5
[4,] 3 10 1.1 100 50 0.5
[5,] 3 10 1.1 100 50 0.5
[6,] 3 10 1.1 100 50 0.5
[7,] 3 10 1.1 100 50 0.5
[8,] 3 10 1.1 100 50 0.5
[9,] 3 10 1.1 100 50 0.5
[10,] 3 10 1.1 100 50 0.5
[11,] 3 10 1.1 100 50 0.5
[12,] 3 10 1.1 100 50 0.5
[13,] 3 10 1.1 100 50 0.5
[14,] 3 10 1.1 100 50 0.5
[15,] 3 10 1.1 100 50 0.5
[16,] 3 10 1.1 100 50 0.5
[17,] 3 10 1.1 100 50 0.5
[18,] 3 10 1.1 100 50 0.5
[19,] 3 10 1.1 100 50 0.5
[20,] 3 10 1.1 100 50 0.5
[21,] 3 10 1.1 100 50 0.5
[22,] 3 10 1.1 100 50 0.5
[23,] 3 10 1.1 100 50 0.5
[24,] 3 10 1.1 100 50 0.5

Pollen dispersal kernel matrix This is a matrix that has (number of habitats)*(number of stages) rows
and six columns. If not specified, a working matrix is constructed from the floatparam elements

The rows correspond to stages in the landscape. The columns correspond to (in order)

1. the pollen dispersal kernel. This can be 1,2, or 3 (the default). 1 and 2 are really just special cases of
the mixed pdf (kernel 3)

2. the scale parameter for kernel component 1

3. the shape parameter for kernel component 1

4. the scale parameter for kernel component 2

5. the shape parameter for kernel component 2

6. the mixing parameter. Ranges from 0 to 1. If 1 dispersal is determined solely by kernel 1. If 0, dispersal
is determined solely by kernel 2. Intermediate values represent a mixture.
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> pk <- matrix(0, nrow = 4 * 6, ncol = 6)

> pk[, 1] <- rep(3, 4 * 6)

> pk[, 2] <- rep(5, 4 * 6)

> pk[, 3] <- rep(2, 4 * 6)

> pk[, 4] <- rep(100, 4 * 6)

> pk[, 5] <- rep(50, 4 * 6)

> pk[, 6] <- rep(1, 4 * 6)

> pk

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 3 5 2 100 50 1
[2,] 3 5 2 100 50 1
[3,] 3 5 2 100 50 1
[4,] 3 5 2 100 50 1
[5,] 3 5 2 100 50 1
[6,] 3 5 2 100 50 1
[7,] 3 5 2 100 50 1
[8,] 3 5 2 100 50 1
[9,] 3 5 2 100 50 1
[10,] 3 5 2 100 50 1
[11,] 3 5 2 100 50 1
[12,] 3 5 2 100 50 1
[13,] 3 5 2 100 50 1
[14,] 3 5 2 100 50 1
[15,] 3 5 2 100 50 1
[16,] 3 5 2 100 50 1
[17,] 3 5 2 100 50 1
[18,] 3 5 2 100 50 1
[19,] 3 5 2 100 50 1
[20,] 3 5 2 100 50 1
[21,] 3 5 2 100 50 1
[22,] 3 5 2 100 50 1
[23,] 3 5 2 100 50 1
[24,] 3 5 2 100 50 1

This pollen kernel specifies a Weibull with shape parameter 2 and scale parameter 5. The mixing parameter
is set to 1 so the other distribution component values are actually unimportant.

Habitat locations The habitat locations are encoded as a set of 4 vectors giving the left and right x
coordinates and bottom and top y coordinates for each habitat. Here the two habitats are defined as
0,600,0,600 and 800,1400,800,1400

> lx <- c(0, 0, 800, 800)

> rx <- c(600, 600, 1400, 1400)

> bty <- c(0, 800, 0, 800)

> ty <- c(600, 1400, 600, 1400)

Put it all in an epoch The different epoch elements are added to the landscape:

> args(landscape.new.epoch)

function (rland, S = NULL, R = NULL, M = NULL, epochprob = 1,
startgen = 0, extinct = NULL, carry = NULL, localprob = NULL,
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pollen.kernels = NULL, seed.kernels = NULL, leftx = NULL,
rightx = NULL, boty = NULL, topy = NULL, maxland = c(0, 0,

10000, 10000))
NULL

> land <- landscape.new.epoch(land, S = zeromat, R = zeromat, M = zeromat,

+ extinct = extnct, carry = k, localprob = ldem, pollen.kernels = pk,

+ seed.kernels = sk, leftx = lx, rightx = rx, boty = bty, topy = ty)

2.5 Loci

This section describes the genetic loci These loci are unlinked, though those with maternal inheritance are
effectively linked as there is no segregation among them.

This element is a list of loci. Each locus has some characteristics and then a list of all the alleles at the
locus

2.5.1 Locus characteristics

The locus characteristics include

type The type of locus, infinite allele, stepwise mutation, or sequence.

ploidy haploid or diploid

trans transmission mode (biparental versus maternal)

rate locus-wide per meiosis mutation rate

Alleles Each locus has a list of alleles with the following elements. The elements aren’t typically modified
directly, just in the definition of a locus and the course of a simulation

aindex the allele index, this is used to create lookup tables between individuals genotypes and the allele
states

birth year of allele arising from mutation

prop the proportion of the allele at that locus across the entire landscape (never really used though)

state the actual allele state (microsatellite repeat number, infinite allele designation, actual sequence)

Each locus is added in turn by a call to lanscape.new.locus Here I add three loci:

1. haploid maternally inherited infinite allele model (5 alleles)

2. diploid biparentally inherited stepwise mutation model (3 alleles)

3. diploid biparentally inherited finite sequence model (3 alleles, 125 bases)

Each will be initialized with 3 alleles. Sequences are generated at random with base frequencies equal to
0.25 per residue.

> args(landscape.new.locus)

function (rland, type = 0, ploidy = 1, mutationrate = 0, transmission = 1,
numalleles = 2, allelesize = 50, frequencies = NULL)

NULL
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> land <- landscape.new.locus(land, type = 0, ploidy = 1, transmission = 1,

+ numalleles = 5)

> land <- landscape.new.locus(land, type = 1, ploidy = 2, transmission = 0,

+ numalleles = 3)

> land <- landscape.new.locus(land, type = 2, ploidy = 2, transmission = 0,

+ numalleles = 3, allelesize = 125)

> length(land$loci)

[1] 3

2.6 Individuals

Along with the loci defined in the section below (both colored red in figure 1) the individuals section changes
through the course of a simulation. Each landscape object describes a landscape state at a point in time.
The individuals that are alive are represented in this section by a matrix. This matrix has as many rows as
individuals in the landscape. The number of columns includes (currently 9) demographic columns followed
by genetics columns that are determined by the locus object. This works out as 1 column for every haploid
locus and 2 columns for the diploid loci. landscape.ploidy(land) returns the ploidy for each locus in
order they were appended to the landscape. Because the number of demographic columns could change the
function landscape.democol() returns the highest number of the deomgraphic columns (currently 9)

> landscape.ploidy(land)

[1] 1 2 2

> landscape.democol()

[1] 9

The function landscape.new.individuals(land) automatically populates a landscape with no individ-
uals. It allows you to specify the population sizes in each demographic stage in the landscape. Therefore
the vector length is (number habitats)*(number of local stages) in length. One thing to keep in mind is that
if you used the standard function landscape.simulate(land,x) to simulate, it will first apply the rules
encoded in the S matrices before the R matrices. This means if you should probably define at least some
offspring/juvenile individuals initially to mature into reproductive individuals.

Also be careful, it is easy to define huge numbers of reproductive individuals that produce huge numbers
of offspring in the next generation. This can overwhelm some computers depending on RAM and chip speed.
Simulating a total of 10,000-20,000 individuals are tolerable, but not for large numbers of reps on a mac g4
laptop running at 1.4Ghz with 1Gb RAM. Reproduction is the slow step, so life-cycles that have high over
survival and low reproduction run faster than low survival- high reproduction life-cycles.

> vlen <- land$intparam$habitats * land$intparam$stages

> vec <- rep(100, vlen)

> land <- landscape.new.individuals(land, vec)

3 Operations on landscapes

3.1 Simulation

To simulate ecology and genetics use landscape.simulate()

> l1 <- landscape.simulate(land, 10)

> l2 <- landscape.simulate(land, 10)

> l3 <- landscape.simulate(land, 10)

> l4 <- landscape.simulate(land, 10)
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These commands created four replicate simulations of 10 years each, starting with the same initial con-
ditions defined above.

> par(mfrow = c(2, 2))

> landscape.plot.locations(l1)

> landscape.plot.locations(l2)

> landscape.plot.locations(l3)

> landscape.plot.locations(l4)

> par(mfrow = c(1, 1))
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3.2 I/O

landscapes can be written and read from disk as R binary files using save and load. This allows the state
of a simulation to be saved at any point, and just as importantly, a landscape can be read into a fresh install
of kernelPop and the simulation should proceed with the same parameter values as the previous generations
(probably a different random seed, though).

> save(file = "l1.rda", l1)

> rm(l1)

> load(file = "l1.rda", l1)
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3.3 Altering landscapes through time

Because a landscape is a complete state, it is possible to change them through the course of the simulation.
This rasises the possiblity that landscapes can be altered during a simulation run. At the moment this is
going to require altering the landscape object directly. This is no big deal, but it does take a pretty good
understanding of the landscape structure. Some things are not a good idea to change. Most of the intparams
should remain untouched. The floatparams can change (though if you are doing this, most of the changes
will probably be at the level of the pollen kernels and seed kernels). The switch parameters can be changed,
as can the demographic rates in localdem and epoch.

Do not change the loci object directly. That should really happen using the simulation routines.
The individuals object can be changed in some ways. The easiest is to kill individuals at random. It

is also fairly easy to add selection on a particular allele at a locus, though doing this every generation starts
to use up some CPU cycles converting R objects to C++ objects.

This will increase long distance dispersal in this entire landscape at generation 10.

> names(l1$demography$epochs[[1]])

[1] "RndChooseProb" "StartGen" "Extinct" "Carry"
[5] "Localprob" "S" "R" "M"
[9] "leftx" "rightx" "topy" "boty"
[13] "pollenkern" "seedkern"

> sk <- matrix(0, nrow = 4 * 6, ncol = 6)

> sk[, 1] <- rep(3, 4 * 6)

> sk[, 2] <- rep(10, 4 * 6)

> sk[, 3] <- rep(1.1, 4 * 6)

> sk[, 4] <- rep(400, 4 * 6)

> sk[, 5] <- rep(100, 4 * 6)

> sk[, 6] <- rep(0.5, 4 * 6)

> sk

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 3 10 1.1 400 100 0.5
[2,] 3 10 1.1 400 100 0.5
[3,] 3 10 1.1 400 100 0.5
[4,] 3 10 1.1 400 100 0.5
[5,] 3 10 1.1 400 100 0.5
[6,] 3 10 1.1 400 100 0.5
[7,] 3 10 1.1 400 100 0.5
[8,] 3 10 1.1 400 100 0.5
[9,] 3 10 1.1 400 100 0.5
[10,] 3 10 1.1 400 100 0.5
[11,] 3 10 1.1 400 100 0.5
[12,] 3 10 1.1 400 100 0.5
[13,] 3 10 1.1 400 100 0.5
[14,] 3 10 1.1 400 100 0.5
[15,] 3 10 1.1 400 100 0.5
[16,] 3 10 1.1 400 100 0.5
[17,] 3 10 1.1 400 100 0.5
[18,] 3 10 1.1 400 100 0.5
[19,] 3 10 1.1 400 100 0.5
[20,] 3 10 1.1 400 100 0.5
[21,] 3 10 1.1 400 100 0.5
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[22,] 3 10 1.1 400 100 0.5
[23,] 3 10 1.1 400 100 0.5
[24,] 3 10 1.1 400 100 0.5

> l1$demography$epochs[[1]]$seedkern <- sk

Now we can simulate another 10 years, then plot it again. Note that the same object is used as parameter
and result for the current state before and after simulation.

> l1 <- landscape.simulate(l1, 10)

> l2 <- landscape.simulate(l2, 10)

> l3 <- landscape.simulate(l3, 10)

> l4 <- landscape.simulate(l4, 10)

In this plot the changed landscape is on the top left panel.

> par(mfrow = c(2, 2))

> landscape.plot.locations(l1)

> landscape.plot.locations(l2)

> landscape.plot.locations(l3)

> landscape.plot.locations(l4)

> par(mfrow = c(1, 1))
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You can see usually see more long-distance seed dispersal events in the top left.

4 Extracting information from landscapes

4.1 Distances

The coordinates of every individual and their parents makes it straightforward to exmine the actual dispersal
distributions for zygotes and male gametes.

Here are the actual dispersal distances in generation 20.
The take advantage of really simple functions distributed with R
This is the seed-kernel. This includes every dispersal event that gave rise to an individual in the landscape

used for the parameter.

> source("../test/distance-functions.R")

> par(mfrow = c(2, 2))

> hist(seed.dist(l1), breaks = 30, xlab = "seed dispersal distance")

> hist(seed.dist(l2), breaks = 30, xlab = "seed dispersal distance")

> hist(seed.dist(l3), breaks = 30, xlab = "seed dispersal distance")

> hist(seed.dist(l4), breaks = 30, xlab = "seed dispersal distance")

> par(mfrow = c(1, 1))
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Here is the pollination kernel. Pollination distance distributions are really dependent on the spatial
structure of plants.

> par(mfrow = c(2, 2))

> hist(pollination.dist(l1), breaks = 30, xlab = "pollination dispersal distance")

> hist(pollination.dist(l2), breaks = 30, xlab = "pollination dispersal distance")

> hist(pollination.dist(l3), breaks = 30, xlab = "pollination dispersal distance")

> hist(pollination.dist(l4), breaks = 30, xlab = "pollination dispersal distance")

> par(mfrow = c(1, 1))

Histogram of pollination.dist(l1)
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4.2 Populations

The function landscape.populations(land) returns a vector of the population assignments of each indi-
vidual in the landscape. This can be useful in selecting individuals from specific populations for further
processing as well as measuring population sizes. For example the population sizes in the landscape l1 just
simulated are:

> table(landscape.populations(l1))

1 3 4
155 321 15
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4.3 Genetic information

So far the construction of landscapes and their simulation have been described. Genetic information can be
extracted from the landscape as well. The allele indices and states for each genotype at each locus can be
accessed by landscape.locus and landscape.states, respectively. There are also some summary statistics.
These include FST , ΦST , allele frequencies, and measures of θ = 4Neµ.

An important function is landscape.sample this simulates random sampling of populations to subse-
quently analyse. It speeds up analyses and allows you to examing the impact of sampling on summary
statistics.

Here is some code to simulate the landscape land defined above for 100 generations, saving the state at
10 generation intervals in a list called landlist At generation 50, the mean dispersal distance is increased
(though the mixture parameter is weighted more highly towards local dispersal)

> gland <- land

> landlist <- vector("list", 11)

> landlist[[1]] <- gland

> for (i in 2:11) {

+ print(table(landscape.populations(gland)))

+ gland <- landscape.simulate(gland, 10)

+ landlist[[i]] <- gland

+ if (i == 6) {

+ sk <- gland$demography$epochs[[1]]$seedkern

+ sk[, 4] <- rep(500, dim(sk)[1])

+ sk[, 6] <- rep(0.8, dim(sk)[1])

+ gland$demography$epochs[[1]]$seedkern <- sk

+ }

+ }

1 2 3 4
600 600 600 600

1 3
189 596

1 3
365 598

1 3
503 598

1 3
997 597

1 3
997 598

1 2 3 4
997 77 597 76

1 2 3 4
997 78 598 183

1 2 3 4
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997 69 596 147

1 2 3 4
997 124 597 161

This code chunk takes the list created above, “collects” 24 individuals from each of the extant populations
(landscape.amova calls landscape.sample internally) at each time point and calculates mean ΦST . It
creates an object with two columns: the generation of the simulation and the mean ΦST . These are then
plotted.

> plot.ob <- do.call(rbind, lapply(landlist, function(l) {

+ c(l$intparam$currentgen, mean(landscape.amova(l, ns = 24)))

+ }))

> print(xyplot(plot.ob[, 2] ~ plot.ob[, 1], type = c("b", "smooth"),

+ xlab = "Time in years", ylab = "Mean Phi-ST"))
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4.4 Writing files out for other programs to use

The simple analyses in R may fall short of those implemented in other languages There several functions to
write files in formats that support other software. Right now, these functions only write out genotypic data
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suitable for frequency-based analyses. There is room for improvement for outputting sequences and microsat
states.

GenePop There is a function that outputs data into GenePop format which can be used by a host of
other software. This is called landscape.genepop.output. It only exports the diploid loci. Right
now, landscape.genepop.output does output allele states, including microsat states, but it does not
produce sequences for the sequence locus type. Instead it produces the allele indices as alleles in the
output file. Because allele indices can equal zero, and this is the missing data designation in genepop,
1 is added to all allele indices in the output file

> landscape.genepop.output(gland)

Arlequin landscape.write.foreign can output diploid Arlequin files of genotypes. The allele states are
not used.

> l <- landscape.write.foreign(gland, fn = "diploid-arlequin.arb",

+ fmt = "arlequin")

migrate landscape.write.foreign can also output files in a format that migrate should be able to read.
This function outputs diploid data in the form of genotypes for the genotypic version of migrate
analyses. No sequences are output yet.

> l <- landscape.write.foreign(gland, fn = "migrate.infile", fmt = "migrate")

Biosys landsacpe.write.foreign should also be able to output files in biosys format

> l <- landscape.write.foreign(gland, fn = "biosys.txt", fmt = "biosys")

fdist landscape.write.fdist produces an infile suitable for use in the program FDIST. This is based solely
on allele frequencies

> landscape.write.fdist(gland)

The code snippets above should leave files in the ’inst/doc’ directory of your kernelPopinstallation.
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