Kpcoeff_Berez <- function(logP, pKa, fup, BP=1, type=1){
dat <- dat_Berez
dat_all <- dat %>% filter(!tissue %in% c("Plasma","Adipose","RBCs"))
n <- length(dat$tissue)
Kp_all <- vector(mode = "numeric", length = n)
Vwp <- dat$f_water[dat$tissue == "Plasma"]
Vnlp <- dat$f_n_l[dat$tissue == "Plasma"]
Vphp <- dat$f_pl[dat$tissue == "Plasma"]
dat2 <- dat %>% filter(!tissue %in% c("Plasma","RBCs"))
Vwt <- dat2$f_water[dat2$tissue != "Adipose"]
Vwad <- dat2$f_water[dat2$tissue == "Adipose"]
Vnlt <- dat2$f_n_l[dat2$tissue != "Adipose"]
Vnlad <- dat2$f_n_l[dat2$tissue == "Adipose"]
Vpht <- dat2$f_pl[dat2$tissue != "Adipose"]
Vphad <- dat2$f_pl[dat2$tissue == "Adipose"]
fut <- 1/(1+((1-fup)/fup)*0.5)
pH <- dat$pH[dat$tissue == "Adipose"]
#pH <- 7.4 # Use when comparing to PK-Sim Berez. method Kp predictions
logD <- 1.115*logP-1.35 #logD is the olive oil:buffer(water) partition coefficient of nonionized species
logD_star <- switch(type,
#1-neutral
logD,
#2-monoprotic acid
logD-log10(1+10^(pH-pKa)),
#3-monoprotic base
logD-log10(1+10^(pKa-pH)),
#4-diprotic acid
logD-log10(1+10^(2*pH-pKa[1]-pKa[2])),
#5-diprotic base
logD-log10(1+10^(pKa[1]+pKa[2]-2*pH)),
#6-zwitterion
logD-log10(1+10^(pKa[2]-pKa[1]))
)
D_star <- 10^logD_star
Kpad <- ((D_star*(Vnlad+0.3*Vphad)+((Vwad/fut)+0.7*Vphad))/(D_star*(Vnlp+0.3*Vphp)+((Vwp/fup)+0.7*Vphp)))
P <- 10^logP
Kpt <- ((P*(Vnlt+0.3*Vpht)+((Vwt/fut)+0.7*Vpht))/(P*(Vnlp+0.3*Vphp)+((Vwp/fup)+0.7*Vphp)))
#Kp <- c(Kpad, Kpt)
# name <- dat2$tissue %>% substr(1,2) %>% tolower()
# name <- paste("Kp", name, sep="")
# uParam <- split(Kp, name)
#
# return(uParam)
nms_all <- dat_all$tissue %>% substr(1,2) %>% tolower()
nms_all <- paste("Kp", nms_all, sep="")
nms <- c("Kpad",nms_all)
# return(nms)
Kp <- as.list(c(Kpad,Kpt))
names(Kp) <- nms
return(Kp)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.