knitr::opts_chunk$set(echo = TRUE) library(mlbench) library(FDclassifieR)
set.seed(1024) data(Ionosphere) Iono <- Ionosphere Iono <- Iono[,-2] Iono$V1 <- as.numeric(as.character(Iono$V1)) inTraining0 <- createDataPartition(Iono$Class, p = .75, list = FALSE) training <- Iono[ inTraining0,] testing <- Iono[-inTraining0,] testingY <- to_label(Iono[-inTraining0, ncol(Iono)])
table(Iono[, ncol(Iono)])
model_list <- c('nnet', 'rda', 'svmLinear', 'svmRadial', 'pls', 'knn', 'earth', 'avNNet', 'mlp', 'nb', 'rf', 'rpart', 'ctree', 'C5.0', 'gbm', 'bayesglm', 'glm', 'glmnet', 'simpls') t1 <- mtrainer(model_list, dataInfo = 'Iono')
t1 <- train(t1, Class~., training, update=T)
plot(t1)
t1 <- predict(t1, newdata=testing)
#auclist <- apply(t1$predictions, 2, auc.rank, testingY) fde1 <- fde(t1$predictions) fde1 <- calculate_performance(fde1, testingY, alpha=7)
#plot_performance(fde1, nsample=100, trendline=F) plot_performance_nmethods(fde1, nmethod_list = 3:10, nsample=100)
plot_cor(fde1, class_flag='positive')
fde1 <- fde(t1$predictions, testingY)
plot_single(fde1, 'score')
store.mtrainer(t1, 'iono_m8_pre.RData') saveRDS(testingY, 'iono_m8_y.RData')
saveRDS(t1, 'iono_all.RData')
<<<<<<< HEAD
plot_ensemble(fde1, method='correlation', amax=1)
=======
065a1c3bf858d11a9bb8ea9613fd4d98ebcdf449
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.