knitr::opts_chunk$set(echo = TRUE)

library(mlbench)
library(FDclassifieR)

Prepare Data

set.seed(1024)
data(Ionosphere)

Iono <- Ionosphere
Iono <- Iono[,-2]
Iono$V1 <- as.numeric(as.character(Iono$V1))

inTraining0 <- createDataPartition(Iono$Class, p = .75, list = FALSE)
training <- Iono[ inTraining0,]
testing  <- Iono[-inTraining0,]
testingY <- to_label(Iono[-inTraining0, ncol(Iono)])
table(Iono[, ncol(Iono)])
model_list <- c('nnet', 'rda', 'svmLinear', 'svmRadial', 'pls', 'knn', 'earth', 'avNNet', 'mlp', 'nb', 'rf', 'rpart', 'ctree', 'C5.0', 'gbm', 'bayesglm', 'glm', 'glmnet', 'simpls')
t1 <- mtrainer(model_list, dataInfo = 'Iono')
t1 <- train(t1, Class~., training, update=T)
plot(t1)
t1 <- predict(t1, newdata=testing)
#auclist <- apply(t1$predictions, 2, auc.rank, testingY)

fde1 <- fde(t1$predictions)
fde1 <- calculate_performance(fde1, testingY, alpha=7)
#plot_performance(fde1, nsample=100, trendline=F)
plot_performance_nmethods(fde1, nmethod_list = 3:10, nsample=100)
plot_cor(fde1, class_flag='positive')
fde1 <- fde(t1$predictions, testingY)
plot_single(fde1, 'score')
store.mtrainer(t1, 'iono_m8_pre.RData')
saveRDS(testingY, 'iono_m8_y.RData')
saveRDS(t1, 'iono_all.RData')

<<<<<<< HEAD

plot_ensemble(fde1, method='correlation', amax=1)

=======

065a1c3bf858d11a9bb8ea9613fd4d98ebcdf449



sungcheolkim78/FiDEL documentation built on Nov. 13, 2024, 7:58 a.m.