knitr::opts_chunk$set( collapse = TRUE, comment = "#>", warning = FALSE, message = TRUE, out.width = "100%" )
We just use the dataset which are from previous step.
library(tidymass) load("data_cleaning/POS/object_pos2") load("data_cleaning/NEG/object_neg2")
mass_dataset
classDownload the MS2 data here.
Uncompress it.
object_pos2 <- mutate_ms2( object = object_pos2, column = "rp", polarity = "positive", ms1.ms2.match.mz.tol = 15, ms1.ms2.match.rt.tol = 30, path = "mgf_ms2_data/POS" )
object_pos2
extract_ms2_data(object_pos2)
object_neg2 <- mutate_ms2( object = object_neg2, column = "rp", polarity = "negative", ms1.ms2.match.mz.tol = 15, ms1.ms2.match.rt.tol = 30, path = "mgf_ms2_data/NEG" )
object_neg2
extract_ms2_data(object_neg2)
Metabolite annotation is based on the metid
package.
We need to download MS2 database from metid
website.
Here we download the Michael Snyder RPLC databases
, Orbitrap database
and MoNA database
. And place them in a new folder named as metabolite_annotation
.
snyder_database_rplc0.0.3
.load("metabolite_annotation/snyder_database_rplc0.0.3.rda") snyder_database_rplc0.0.3
object_pos2 <- annotate_metabolites_mass_dataset(object = object_pos2, ms1.match.ppm = 15, rt.match.tol = 30, polarity = "positive", database = snyder_database_rplc0.0.3)
orbitrap_database0.0.3
.load("metabolite_annotation/orbitrap_database0.0.3.rda") orbitrap_database0.0.3
object_pos2 <- annotate_metabolites_mass_dataset(object = object_pos2, ms1.match.ppm = 15, polarity = "positive", database = orbitrap_database0.0.3)
mona_database0.0.3
.load("metabolite_annotation/mona_database0.0.3.rda") orbitrap_database0.0.3
object_pos2 <- annotate_metabolites_mass_dataset(object = object_pos2, ms1.match.ppm = 15, polarity = "positive", database = mona_database0.0.3)
snyder_database_rplc0.0.3
.object_neg2 <- annotate_metabolites_mass_dataset(object = object_neg2, ms1.match.ppm = 15, rt.match.tol = 30, polarity = "negative", database = snyder_database_rplc0.0.3)
orbitrap_database0.0.3
.object_neg2 <- annotate_metabolites_mass_dataset(object = object_neg2, ms1.match.ppm = 15, polarity = "negative", database = orbitrap_database0.0.3)
mona_database0.0.3
.object_neg2 <- annotate_metabolites_mass_dataset(object = object_neg2, ms1.match.ppm = 15, polarity = "negative", database = mona_database0.0.3)
load("metabolite_annotation/object_pos2") load("metabolite_annotation/object_neg2")
The annotation result will assign into mass_dataset
class as the annotation_table
slot.
head(extract_annotation_table(object = object_pos2))
variable_info_pos <- extract_variable_info(object = object_pos2)
head(variable_info_pos)
table(variable_info_pos$Level)
table(variable_info_pos$Database)
Use the ms2_plot_mass_dataset()
function to get the MS2 matching plot.
ms2_plot_mass_dataset(object = object_pos2, variable_id = "M86T95_POS", database = mona_database0.0.3)
ms2_plot_mass_dataset(object = object_pos2, variable_id = "M86T95_POS", database = mona_database0.0.3, interactive_plot = TRUE)
ms2_plot_mass_dataset(object = object_pos2, variable_id = "M147T54_POS", database = snyder_database_rplc0.0.3, interactive_plot = FALSE)
Save data for subsequent analysis.
save(object_pos2, file = "metabolite_annotation/object_pos2") save(object_neg2, file = "metabolite_annotation/object_neg2")
sessionInfo()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.