Description Usage Arguments Value Author(s) References Examples
Integrate AUC for curves from a multigroup piecewise or polynomial lmerMod mixed model: Piecewise/Polynomial Integration Analysis
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | pia(
model,
basis_choice = c("tent", "poly"),
break_points = NULL,
degree = NULL,
N = 25,
local_modeling_data_frame = NULL,
xmin = NULL,
xmax = NULL,
xname = NULL,
xrange_norm_method = c("none", "xrange", "half_xrange_squared"),
subtract_starting_value = TRUE,
groupname = NULL,
contrast = c("Identity", "Dunnett", "Tukey", "Sequen", "custom"),
custom_contrast = NULL,
reference_Dunnett = NULL,
glht_rhs = NULL,
glht_alternative = c("two.sided", "less", "greater"),
provide_warnings = TRUE,
single_group_identifier = "group_01",
derivative = 0,
return_list = FALSE
)
|
model |
object of class 'lmerMod' from package 'lme4'. |
basis_choice |
character describing which basis function type to use in making a design matrix. |
break_points |
numeric vector with the x-locations at which to place break points. |
degree |
numeric degree of polynomial basis, if that is selected. Passed straight to stats::poly(). |
N |
integer number of equally-spaced points to use in numerical integration. |
local_modeling_data_frame |
data.frame should be clean_DF_restricted form model_study(), or just the contents of maeve_options('modeling_data_frame'). |
xmin |
numeric lower bound of definite integral |
xmax |
numeric upper bound of definite integral |
xname |
character name of numeric variable used in the piecewise fit. If provided, it should be a column in "maeve::maeve_options('modeling_data_frame')". |
xrange_norm_method |
character string determining *how* the xrange normalization within pia() should be done. Must be one of "none", "xrange", "half_xrange_squared". |
subtract_starting_value |
logical: Subtract from all computed AUCs the spline fit at xmin for that group (adjusted for xrange_norm_method choice). |
groupname |
character name of grouping factor by which the piecewise fit is conditioned. If provided, it should be the first and only component in model$xlevel. |
contrast |
character string with contrast type. 'Identity' gives each group fit separately. 'Dunnett', 'Tukey', etc., from multcomp::contrMat() are accepted. |
custom_contrast |
numeric matrix of contrasts for slope estimates. Column names must match exactly with treatment group names. If it is not NULL, it overrides whatever is specified in "contrast". |
reference_Dunnett |
character string with reference group for Dunnett's test. If provided, must match exactly to one of "maeve::maeve_options('modeling_data_frame')[['group']]". |
glht_rhs |
numeric vector for the right-hand side (rhs) of the contrast hypothesis; passed to glht() "rhs = " argument. |
glht_alternative |
character string passed to glht() as its "alternative = " argument. |
provide_warnings |
logical: provide warning messages when something looks look awry? |
single_group_identifier |
character string with name to give a single group in the output. |
derivative |
integer specifying which derivative of the fixed fits to integrate (the default, "0", means to just integrate the fixed effects curve by group). |
return_list |
logical: return a whole bunch of output in a list. |
an object of class glht from package multcomp (or a list if return_list == TRUE)
Bill Forrest <forrest@gene.com>
Bill Forrest forrest@gene.com
1 2 3 4 5 6 7 8 9 10 | ## Not run:
N <- 100
x <- seq( 0, pi, length = N )
set.seed( 20180425 )
dat <- data.frame( x, y = sin( x ) + rnorm( N, 0, .01 ) )
model <- mgcv::gam( y ~ s( x ), data = dat )
pia_out <- pia( model, xmin = 0, xmax = pi/2, glht_rhs = 1 ) # about "1.0" over [ 0, pi/2 ]...
pia_list <- pia( model, xmin = 0, xmax = pi/2, glht_rhs = 1, return_list = TRUE ) # extras...
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.