
enpls: R Package for Ensemble Partial Least
Squares Regression

Min-feng Zhu, Nan Xiao, Qing-Song Xu, Dong-Sheng Cao

Package Version: 1.1

March 14, 2016

COMPUTATIONAL BIOLOGY &
DRUG DESIGN GROUP!
CENTRAL SOUTH UNIV., CHINA

.

1 Introduction

It is difficult and complicated to construct an accurate model in QSAR (Quantitative Structure-
Activity Relationship) modeling. The process usually involves feature selection, outlier detection,
non-linearship, and model stability problems. Such modeling procedures is pretty tedious for the
users who do not have a comprehensive knowledge of related methods. Not to mention that there
exists far too many customized algorithms that can solve such problems, which are often not easy
to understand and implement.

For the most frequently used model in QSAR studies, i.e. the partial least squares, we present a
simple, easy-to-understand unified framework to solve such problems, users can do feature selection,
outlier detection,applicability domain and ensemble prediction under our framework(see Figure 1).
Also, a “clean” dataset can be generated using our method before modeling. We present the R
package enpls here as the implementation.

Figure 1: The workflow for the enpls packages

Theoretically, statistical distribution can provide abundant information about random variables.
Most approaches of statistical inference are based on such a statistical distribution. In our previ-
ous studies (Cao et al., 2010, 2011), we made use of such a strategy to construct the statistical
distribution of model features, such as prediction errors and variable coefficients, and subsequently
made statistical inference. The statistic of these distributions, namely mean value and standard de-
viation, are then used to quantitatively describe various model features. Monte-Carlo or bootstrap
approaches are constantly employed to extract the information and used for statistical inference.
In general, Monte-Carlo or bootstrap approaches can be used to generate a distribution of some
statistic of interest by repeatedly calculating that statistic randomly selected portions of the data
because of its good asymptotic properties. For each of the functions, two resampling methods were
considered, i.e. Monte-Carlo resampling (default method) or bootstrap resampling. In general, the
Monte-Carlo resampling method randomly samples from the original dataset for many times, each
time by a tunable sampling ratio < 1. The bootstrap resampling method, in the other hand, ran-
domly samples the same size of the original dataset from the dataset with replacement(see Figure
2).

In QSAR/QSPR study, if we model a given QSAR/QSPR dataset by a single training/validation
set division, we can obtain predictive errors of this validation set and all variable coefficients, charac-
terizing the behavior of model features (i.e., prediction errors and variable coefficients) within these
two sets. However, these model features highly depend on the way in which we split the data into
the training set and validation set. Different training/validation data division should yield different
model features. Thus, by changing the training/validation data division by Monte-Carlo or boot-
strap methods, we can obtain a large number of QSAR/QSPR models and corresponding model

1

Model 1

Combined
Votes

New Data

Prediction
!

Training
Data

Model 2

Model k

D1

D2

Dk

.

.

.

Figure 2: Ensemble methods for increasing prediction accuracy

features so as to gain some insight of the data structure statistically.
What kind of information about these model features can be obtained from their distribution?

Generally speaking, some parameters of interest can be acquired as a function of the probability
density function or of the empirical cumulative distribution function of a random variable (e.g.,
model features), which will make statistical inference about model features easier. Suppose that z1,
. . ., zm will be used to estimate a population parameter θ. A function of a population distribution
function, defining the parameter θ, can usually be expressed as:

θ =

∫
g(z) dPm(z)

Here g(z) is the statistic used to estimate θ, whose expectations we might be interested in.
Pm(z) is the probability density of z. Thus, by constructing different g(z), one can obtain different
statistics θ describing specific information (e.g., mean value or standard deviation) of a population
distribution.

In Cao et al. (2010, 2011), we addressed feature selection, outlier detection and model reliability
problems simultaneously by constructing a unified framework, based on the idea of the statisti-
cal distribution. Our approach exploits the fact that the distribution of linear model coefficients
provides a mechanism for ranking and interpreting the effects of variable, while the distribution
of the prediction errors provides a mechanism for differentiating the outliers from normal samples.
By combination of multiple models, we construct ensemble partial least squares model to improve
prediction performance.

The alkanes data is used for demonstrating the feature selection and outlier detection. The
dataset has a predictor matrix x with 207 samples and 21 variables, with a continuous response y.
The dataset is extracted from Liang et al. (2008). See ?alkanes for details.

require(enpls)

Loading required package: enpls

data(alkanes)

x = alkanes$x

y = alkanes$y

2

Coef2 Coefp

Model1

Model2

Modeln

: : :

: : :

A B

CD

VarImp = mean
sd

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

0 5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

0 5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

sd

mean

B D A C

: : : : : : : : :Coef1

Figure 3: Feature Selection

3

2 Ensemble PLS for Feature Selection

Monte-Carlo uninformative variable elimination (Centner et al., 1996) methods have been success-
fully employed in variable selection (Cai et al., 2008; Han et al., 2008). The important variables
should be the ones that possess both large mean value and small standard deviation. We construct
the following measure of variable importance:

c =
mean(s)

sd(s)

where s is the coefficient vector for the i-th variable, generated by Monte-Carlo or bootstrap.
mean(s) and sd(s) represent the mean value and standard deviation, respectively. Thus, the variable
with the largest ci value should be the most important one in the pool of variables. These variables
with the smaller ci value should be removed due to their small contribution to models.

The function enpls.fs() is made for ensemble PLS feature selection:

set.seed(42)

varimp = enpls.fs(x, y, MCtimes = 10)

print(varimp, nvar = 10L)

Variable Importance by Ensemble Partial Least Squares

Importance

Chi.C.3 3.2581791

Chi.P.4 2.2918480

MEDV.23 1.9868588

MEDV.33 1.5601152

Estate.1 1.5263584

Chi.P.5 1.4797132

MEDV.22 1.0295425

MEDV.13 0.9866562

Chi.P.3 0.9257917

Estate.2 0.9126434

plot(varimp, nvar = 10L)

The top ten important varibles are printed, and plotted in Figure 4, by using nvar = 10 in
print() and plot(). See ?plot.enpls.fs and ?print.enpls.fs for more available options.

By changing the default parameters in enpls.fs() and other functions in the enpls package, we
could control the maximum components included in each model, resampling method (Monte-Carlo
or Bootstrap). By setting the parallel parameter to an (> 1) integer, the model fitting will be
done in parallel, which will increase the computation speed significantly.

3 Ensemble PLS for Outlier Detection

The distribution of prediction errors generated by a large number of models can contain more sample
information (i.e., whether this sample is an outlier or not). Likewise, the mean value mean(j) and
the standard deviation sd(j) of the prediction error distribution for the j-th sample are employed
to describe this distribution.

mean(j) =
1

k

k∑
i=1

error(i)

sd(j) =

(
1

k − 1

k∑
i=1

(error(i)−mean(j))2
) 1

2

4

Estate.2

Chi.P.3

MEDV.13

MEDV.22

Chi.P.5

Estate.1

MEDV.33

MEDV.23

Chi.P.4

Chi.C.3

1.0 1.5 2.0 2.5 3.0

Figure 4: Top ten important variables of the alkanes dataset

5

Model1

Model2

Modeln

: : :

: : :

A B

CD

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

0 5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

0 5 10 15
0.

0
0.

1
0.

2
0.

3
0.

4
0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

sd

Mean

B D A C

: : : : : : : : :Sample1

PredError

Sample2

PredError

SampleN

PredError

Figure 5: Outlier Detection

6

where k is the total times of which the j-th sample is found in the validation set. The error(i)
is the prediction error of the j-th sample in the i-th cycle. Thus, a large mean value of prediction
errors for some sample indicates that we can always obtain large prediction errors no matter how
the training datasets are perturbated.

We can define two types of outliers, i.e. the y outlier and the X outlier. For the y outliers,
the cross-prediction can provide information on potentially outliers. For example, if only one outlier
molecule has many chlorine atoms and chlorine is an important variable, then the full dataset may be
able to calibrate the effect of chlorine and make good predictions, but the dataset with the molecule
excluded will likely lead to a large prediction residual on that molecule. So, the prediction errors
obtained by cross-prediction allow us to easily detect such outliers compared to the fitted residuals.

In the other hand, in linear models, if an external data point xi is being predicted and has a
leverage of h = xti(X

tX)−1xi, its prediction error has the variance s2{ei} = MSE(1 + h). We see
that the variability of the sampling distribution of ei is affected by how far xi is from the centroid
X̄ through the term h. The further xi is from X̄, the greater the quantity is, and the larger the
variance of ei is. Thus, the variation of ei obtained from different observations will be greater when
xi is far from the mean value than the ones near the mean value. We can therefore detect the X
outliers by standard deviation of prediction errors.

The function enpls.od() is provided for outlier detection:

od = enpls.od(x, y, MCtimes = 10)

plot(od, criterion = 'sd')

Figure 6 reveals the outliers with criterion = 'sd'. This means samples that lie in n (default
is 3) times out of the standard deviation of the mean Error Mean and mean Error SD are considered
to be outliers. The black points are normal samples, the samples with red lables are y outliers (lower
right), the blue ones are X outliers (upper left), the purple ones (may appear in the upper right
part) will be the abnormal samples, as defined in Cao et al. (2011). Use criterion = 'quantile'

to get the outliers by quantile information. See ?enpls.od for details.

4 Ensemble PLS for Applicability Domain

In Kaneko H (2014), the standard deviation of the multiple values predicted by the submodels is
used as the prediction reliability. the STD of the multiple y values predicted by the submodels is
given as

STD =

√∑k
i=1(yi − y)2

k − 1

Where yi is the ith predicted y value. The final predicted y value is the average or median of
the multiple y values (y1, y2, ..., yk) predicted by the submodels.

This STD index is a prediction reliability and is used to set the AD. If the predicted y values are
close together and the STD is small, the prediction error is assumed to be small, that is, the actual
difference between the average prediction value and the experimental value will be small if there is
no bias. Conversely, when the predicted y values vary greatly and the STD is large, the prediction
error is assumed to be large. Thus, the STD can be used as an index of prediction errors.

The logS data Hou et al. (2004) is used for demonstrating the applicability domain and predic-
tion. The dataset has a predictor matrix x with 458 samples and 166 variables, with a continuous
response y. Two test sets from the dataset are given(test1 and test2). Test1 contains 174 samples
and 166 variables. Test2 contains 446 samples and 166 variables. The dataset is extracted from .
See ?logS for details.

The function enpls.ad() is provided for applicability domain :

7

0 5 10 15

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Error Mean

E
rr

or
 S

D

Figure 6: Outlier detection result of the alkanes dataset

8

Figure 7: Applicability Domain

9

data(logS)

x.ad = logS$x

y.ad = logS$y

x.test1 = logS$x.test1

y.test1 = logS$y.test1

ad_test1 = enpls.ad(x.ad, y.ad, x.test = x.test1, y.test =

y.test1, MCtimes = 10)

Beginning MCtimes 1

Beginning MCtimes 2

Beginning MCtimes 3

Beginning MCtimes 4

Beginning MCtimes 5

Beginning MCtimes 6

Beginning MCtimes 7

Beginning MCtimes 8

Beginning MCtimes 9

Beginning MCtimes 10

plot(ad_test1)

x.test2 = logS$x.test2

y.test2 = logS$y.test2

ad_test2 = enpls.ad(x.ad, y.ad, x.test = x.test2, y.test =

y.test2, MCtimes = 10)

Beginning MCtimes 1

Beginning MCtimes 2

Beginning MCtimes 3

Beginning MCtimes 4

Beginning MCtimes 5

Beginning MCtimes 6

Beginning MCtimes 7

Beginning MCtimes 8

Beginning MCtimes 9

Beginning MCtimes 10

plot(ad_test2)

The green points represent the training set, and the red points represent the test set. If the red
points are not in the coverage of the green points, it means that the test set is not in the application
domain of the model. Here, two test sets are evaluated. Figure 8, all the red points from test1
set are in the coverage of the green points. It means that the samples of the test1 set are in the
application domain of the model. On the contrary, Figure 9, the samples of the test2 set are not in
the application domain of the model.

5 Ensemble PLS Modeling and Prediction

Ensemble methods, like bagging (Breiman, 1996) and boosting (Friedman et al., 2000), are usually
used to improve model performance. Naturally, in enpls, we ensemble predictions from multiple
PLS models generated by Monte-Carlo or bootstrap resampling methods to improve prediction
performance.

For fitting ensemble partial least squares regression models, use enpls.en():

10

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0
STD

A
bs

ol
ut

e
P

re
di

ct
io

n
E

rr
or

Figure 8: Applicability domain result of the logS test1

11

0.0

2.5

5.0

7.5

10.0

12.5

0 5 10 15 20
STD

A
bs

ol
ut

e
P

re
di

ct
io

n
E

rr
or

Figure 9: Applicability domain result of the logS test2

12

Coef2 Coefp

Model1

Model2

Modeln

: : :

: : :: : : : : : : : :Coef1

Sample2

Prediction

Samplep

Prediction

Model1

Model2

Modeln

: : :

: : :: : : : : : : : :Sample1

Prediction

P
re

d
ic

te
d

Experimental

Figure 10: Ensemble Modeling
13

−2000 −1000 −500 0 500 1000

−
20

00
−

10
00

0
50

0
10

00

Experimental

P
re

di
ct

ed

Figure 11: Experimental values vs. predicted values

enpls.fit = enpls.en(x, y, MCtimes = 10)

With the fitted object enpls.fit, we could predict new X with predict(), and visualize the
predicted result:

y.pred = predict(enpls.fit, newx = x)

ypred = y.pred$ypred

plot(y, ypred, xlim = range(y), ylim = range(y),

xlab = 'Experimental', ylab = 'Predicted')

abline(a = 0L, b = 1L)

plot(y.pred, y)

Figure 11 and Figure 12 shows the experimental values and predicted values.

6 Model Evaluation with k-fold Cross Validation

For ensemble partial least squares, cv.enpls() is used for k-fold cross validation:

14

−2000

−1000

0

1000

−2000 −1000 0 1000
Experimental

P
re

di
ct

ed

Figure 12: Experimental values vs. predicted values

15

−2000 −1000 −500 0 500 1000

−
20

00
−

10
00

0
50

0
10

00

Real Response

P
re

di
ct

ed
 R

es
po

ns
e

Figure 13: Cross validation result: experimental values vs. predicted values

cv.enpls.fit = cv.enpls(x, y, MCtimes = 10)

Beginning fold 1

Beginning fold 2

Beginning fold 3

Beginning fold 4

Beginning fold 5

print(cv.enpls.fit)

Cross Validation Result for Ensemble Partial Least Squares

RMSE = 3.3172, R2 = 0.999968

plot(cv.enpls.fit)

Then we printed the cross validation result: RMSE and R2. The argument nfolds controls the
fold number (default is 5). See ?cv.enpls for details. Figure 13 shows the experimental values and
the predicted values of the cross validation result.

16

References

Breiman L (1996). “Bagging predictors.” Machine learning, 24(2), 123–140.

Cai W, Li Y, Shao X (2008). “A variable selection method based on uninformative variable elimina-
tion for multivariate calibration of near-infrared spectra.” Chemometrics and intelligent laboratory
systems, 90(2), 188–194.

Cao DS, Liang YZ, Xu QS, Li HD, Chen X (2010). “A new strategy of outlier detection for
QSAR/QSPR.” Journal of computational chemistry, 31(3), 592–602.

Cao DS, Liang YZ, Xu QS, Yun YF, Li HD (2011). “Toward better QSAR/QSPR modeling:
simultaneous outlier detection and variable selection using distribution of model features.” Journal
of computer-aided molecular design, 25(1), 67–80.

Centner V, Massart DL, de Noord OE, de Jong S, Vandeginste BM, Sterna C (1996). “Elimination
of uninformative variables for multivariate calibration.” Analytical chemistry, 68(21), 3851–3858.

Friedman J, Hastie T, Tibshirani R (2000). “Special invited paper. additive logistic regression: A
statistical view of boosting.” Annals of statistics, pp. 337–374.

Han QJ, Wu HL, Cai CB, Xu L, Yu RQ (2008). “An ensemble of Monte Carlo uninformative variable
elimination for wavelength selection.” Analytica chimica acta, 612(2), 121–125.

Hou T, Xia K, Zhang W, Xu X (2004). “ADME evaluation in drug discovery. 4. Prediction of
aqueous solubility based on atom contribution approach.” Journal of chemical information and
computer sciences, 44(1), 266–275.

Kaneko H FK (2014). “Applicability domain based on ensemble learning in classification and re-
gression analyses.” Journal of chemical information and modeling, 54(9), 2469–2482.

Liang YZ, Yuan DL, Xu QS, Kvalheim OM (2008). “Modeling based on subspace orthogonal
projections for QSAR and QSPR research.” Journal of Chemometrics, 22(1), 23–35.

17

