
rDNAse: R package for generating various numerical
representation schemes of DNA sequences

Min-feng Zhu, Jie Dong, Dong-Sheng Cao

Package Version: 1.1-0

2016-07-12

COMPUTATIONAL BIOLOGY &
DRUG DESIGN GROUP!
CENTRAL SOUTH UNIV., CHINA

.

Contents

1. The Full Workflow Using rDNAse 1

2. Package Overview 3

3. Commonly Used Descriptors 5

4. Autocorrelation 7

5. Pseudo nucleic acid composition 13

6. Similarity Calculation by Sequence Alignment 16

7. Similarity Calculation by GO Semantic Similarity Measures 17

8. Miscellaneous Tools 18

9. Summary 19

The rDNAse Manual

Abstract

The rDNAse R package can generate various feature vectors for DNA sequences, this R pack-
age could: 1) Calculate three nucleic acid composition features describing the local sequence
information by means of kmers (subsequences of DNA sequences); 2) Calculate six auto-
correlation features describing the level of correlation between two oligonucleotides along a
DNA sequence in terms of their specific physicochemical properties; 3) Calculate six pseudo
nucleotide composition features, which can be used to represent a DNA sequence with a dis-
crete model or vector yet still keep considerable sequence order information, particularly the
global or long-range sequence order information, via the physicochemical properties of its
constituent oligonucleotides. There are five modules in the rDNAse package, including basic
tools, nucleic acid composition, autocorrelation, pseudo nucleotide composition and similar-
ity calculation. The basic tools module contains several basic functions manipulating DNA
data, including reading DNA data from files or list (a data structure in R), checking the
validity and get DNA sequences from Genbank by GI ID(s), etc. The three modules nucleic
acid composition, autocorrelation, pseudo nucleotide composition respond to the calculation
of 11 different features from three feature categories. The nucleic acid composition aims at
computing three types of nucleic acid composition, including basic kmer, reverse compliment
kmer and increment of diversity; The autocorrelation aims at computing six types of au-
tocorrelation, including dinucleotide-based auto covariance (DAC), dinucleotide-based cross
covariance (DCC), dinucleotide-based auto-cross covariance (DACC), trinucleotide-based auto
covariance (TAC), trinucleotide-based cross covariance (TCC), and trinucleotide- based auto-
cross covariance (TACC); The pseudo nucleotide composition aims at computing two types
of pseudo nucleic acid composition: pseudo dinucleotide composition (PseDNC), pseudo k-
tuple nucleotide composition (PseKNC). The similarity calculation module contains similarity
calculation by sequence alignment and GO semantic similarity measures.

Keywords: DNA sequence, Descriptor, Sequence alignment, Gene Ontology, Sequence fea-
tures

1. The Full Workflow Using rDNAse

Here we use the DNaseI HSs in the human genome presented in the study of Noble et al.
(2005) to demonstrate the full workflow when using rDNAse.

We select two classes of DNA as our benchmark dataset. 280 validated erythroid HS sequences
were treated as the positive sample set, 737 validated erythroid HS sequences were treated as
the negative sample set.

First, we load the rDNAse package, then read the DNA sequences stored in two separated
FASTA files with readFASTA():

require(rDNAse)

load FASTA files

pos_hs = readFASTA(system.file('dnaseq/hs.fasta',
package = 'rDNAse'))

neg_hs = readFASTA(system.file('dnaseq/non-hs.fasta',
package = 'rDNAse'))

1

The rDNAse Manual

length(pos_hs)

[1] 280

length(neg_hs)

[1] 737

To assure that the DNA sequences only have the dour standard deoxyribonucleic acid types
which is required for the descriptor computation, we use the dnacheck() function in rDNAse
to do the deoxyribonucleic acid type sanity checking and remove the non-standard sequences:

pos_hs = pos_hs[(sapply(pso_hs, dnacheck))]

neg_hs = neg_hs[(sapply(neg_hs, dnacheck))]

length(pos_hs)

[1] 280

length(neg_hs)

[1] 737

For the remaining sequences, we calculate the kmer descriptor, i.e., the kmer descriptor (Noble
et al. 2005) and make class labels for classification modeling.

calculate kmer descriptors

x1 = t(sapply(pos_hs, kmer))

x2 = t(sapply(neg_hs, kmer))

x = rbind(x1, x2)

make class labels

labels = as.factor(c(rep(0, length(pos_hs)), rep(1, length(neg_hs))))

Next, we will split the data into a 75% training set and a 25% test set.

split training and test set

set.seed(1001)

tr.idx = c(sample(1:nrow(x1), round(nrow(x1) * 0.75)),

sample(nrow(x1) + 1:nrow(x2), round(nrow(x2) * 0.75)))

te.idx = setdiff(1:nrow(x), tr.idx)

x.tr = x[tr.idx,]

x.te = x[te.idx,]

y.tr = labels[tr.idx]

y.te = labels[te.idx]

2

The rDNAse Manual

We will train a random forest classification model on the training set with 5-fold cross-
validation, using the randomForest package.

require(randomForest)

rf.fit = randomForest(x.tr, y.tr, cv.fold = 5)

print(rf.fit)

The training result is:

Call:

randomForest(x = x.tr, y = y.tr, cv.fold = 5)

Type of random forest: classification

Number of trees: 500

No. of variables tried at each split: 4

##

OOB estimate of error rate: 13.89%

Confusion matrix:

0 1 class.error

0 138 72 0.34285714

1 34 519 0.06148282

With the model trained on the training set, we predict on the test set and plot the ROC curve
with the pROC package, as is shown in figure 1.

predict on test set

rf.pred = predict(rf.fit, newdata = x.te, type = 'prob')[, 1]

plot ROC curve

require(pROC)

plot.roc(y.te, rf.pred, col = '#0080ff', grid = TRUE, print.auc = TRUE)

The area under the ROC curve (AUC) is:

Call:

plot.roc.default(x = y.te, predictor = rf.pred, col = "#0080ff",

grid = TRUE, print.auc = TRUE)

##

Data: rf.pred in 70 controls (y.te 0) > 184 cases (y.te 1).

Area under the curve: 0.7799

2. Package Overview

The rDNAse package is freely available from the Comprehensive R Archive Network (http:
//CRAN.R-project.org/package=rDNAse). This vignette corresponds to rDNAse version
1.1-0 and was typeset on 2016-07-12.

The rDNAse computes three feature groups composed of 11 different features, including:

3

http://CRAN.R-project.org/package=rDNAse
http://CRAN.R-project.org/package=rDNAse

The rDNAse Manual

Specificity

S
e

n
s
iti

v
ity

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1.0 0.8 0.6 0.4 0.2 0.0

AUC: 0.780

Figure 1: ROC curve achieved by the predictor based on kmers for predicting DNaseI HSs in
the human genome

• Basic function

– readFASTA() - Read DNA sequence data from FASTA files

• Nucleic acid composition

– kmer() - Basic kmer and Reverse compliment kmer

– make_idkmer_vec() - Increment of diversity (ID)

• Autocorrelation

– extrDAC() - Dinucleotide-based auto covariance

– extrDCC() - Dinucleotide-based cross covariance

– extrDACC() - Dinucleotide-based auto-cross covariance

– extrTAC() - Trinucleotide-based auto covariance

– extrTCC() - Trinucleotide-based cross covariance

– extrDACC() - Trinucleotide-based auto-cross covariance

• Pseudo nucleotide composition

– extrPseDNC() - Pseudo dinucleotide composition

– extrPseKNC() - Pseudo k-tupler nucleotide composition

4

The rDNAse Manual

The rDNAse package integrates the function of parallelized similarity score computation
derived by local or global DNA sequence alignment between a list of DNA sequences, the
sequence alignment computation is provided by Biostrings, the corresponding functions listed
in the rDNAse package include:

• twoSeqSim() - Similarity calculation derived by sequence alignment between two DNA
sequences

The rDNAse package also integrates the function of parallelized similarity score computation
derived by Gene Ontology (GO) semantic similarity measures between a list of GO terms /
Entrez Gene IDs, the GO similarity computation is provided by GOSemSim, the correspond-
ing functions listed in the rDNAse package include:

• twoGOSim() - Similarity calculation derived by GO-terms semantic similarity measures
between two GO terms / Entrez Gene IDs

In the next sections, we’ll introduce the descriptors and function usage in this order.

3. Commonly Used Descriptors

Disclaimer. Users of the rDNAse package need to intelligently evaluate the underlying
details of the descriptors provided, instead of using rDNAse with their data blindly, especially
for the descriptor types with more flexibility. It would be wise for the users to use some
negative and positive control comparisons where relevant to help guide interpretation of the
results.

A DNA or deoxyribonucleic acid sequence with N deoxyribonucleic acid could be generally
represented as {R1, R2, . . . , Rn }, where Ri represents the residue at the i-th position in the
sequence. The labels i and j are used to index deoxyribonucleic acid position in a sequence,
and r, s, t are used to represent the Deoxyribonucleic acid type .

A DNA sequence could be divided equally into segments and the methods, described as follows
for the global sequence, could be applied to each segment.

3.1. kmer

Basic kmer is the simplest approach to represent the DNAs, in which the DNA sequences are
represented as the occurrence frequencies of k neighboring nucleic acids. This approach has
been successfully applied to human gene regulatory sequence prediction (Noble et al. 2005),
enhancer identification (Lee et al. 2011), etc.

f(r, s) =
Nrs

N − 1
r, s = 1, 2, . . . , 16.

where Nrs is the number of dipeptide represented by deoxyribonucleic acid r and type s. here
we use kmer() to compute the descriptors:

5

The rDNAse Manual

require(rDNAse)

Loading required package: rDNAse

x = "AATTCATGCGTCCGGACTTCTGCCTCGAGCCGCCGTACACTGGGCCCTGCAAAGCTC"

kmer(x)

AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT

3 3 2 2 3 6 5 6 2 7 3 2 1 5 4 2

if reverse is TRUE, we can use kmer() to compute the reverse compliment kmer.The reverse
compliment kmer is a variant of the basic kmer, in which the kmers are not expected to be
strand-specific, so reverse complements are collapsed into a single feature. For example, if
k=2, there are totally 16 basic kmers (’AA’, ’AC’, ’AG’, ’AT’, ’CA’, ’CC’, ’CG’, ’CT’, ’GA’,
’GC’, ’GG’, ’GT’, ’TA’, ’TC’, ’TG’, ’TT’), but by removing the reverse compliment kmers,
there are only 10 distinct kmers in the reverse compliment kmer approach (’AA’, ’AC’, ’AG’,
’AT’, ’CA’, ’CC’, ’CG’, ’GA’, ’GC’, ’TA’). For more information of this approach, please refer
to (Noble et al. 2005) (Gupta et al. 2008).

kmer(x, k = 2, reverse = TRUE)

AA AC AG AT CA CC CG GA GC TA

5 5 8 2 7 9 5 7 7 1

3.2. Increment of diversity

The increment of diversity has been successfully applied in the prediction of exonintron splice
sites for several model genomes Zhang and Luo (2003), transcription start site prediction,
and studying the organization of nucleosomes around splice sites Lu and Luo (2008). In this
method, the sequence features are converted into the increment of diversity (ID), defined by
the relation of sequence X with standard source S:

ID = Diversity(X + S)−Diversity(S)−Diversity(X)

Given a sequence X with r feature variables (ID1 to IDr), we obtain an r-dimensional
feature vector R = (ID1, ID2, . . . , IDr) . The feature vector R is designed by the following
considerations. The kmers are responsible for the discrimination between positive samples
and negative samples, and therefore they construct the diversity sources. Based on this, 2
kmer-based increments of diversities ID1 (ID2) between sequence X and the standard source
in positive (negative) training set can be easily introduced as the feature vectors. 9 For more
information of this approach, please refer to (Chen et al. 2010) and (Liu et al. 2012).

pos = readFASTA(system.file('dnaseq/hs.fasta', package = 'rDNAse'))
neg = readFASTA(system.file('dnaseq/non-hs.fasta', package = 'rDNAse'))
make_idkmer_vec(k = 6, x, pos, neg)

6

The rDNAse Manual

[[1]]

[1] 1.510142 3.801528 -194.195500 -194.304161 -277.470938

[6] -277.745802 -304.936679 -304.734915 -303.579784 -303.579784

[11] -296.422865 -296.422865

4. Autocorrelation

Autocorrelation, as one of the multivariate modeling tools, can transform the DNA sequences
of different lengths into fixed-length vectors by measuring the correlation between any two
properties. Autocorrelation results in two kinds of variables: autocorrelation AC between
the same property, and cross-covariance CC between two different properties. Module ac
(ac is the abbreviation of autocorrelation) in rDNAse allows the users to generate various
kinds of autocorrelation feature vectors for given DNA sequences or FASTA files by selecting
different methods and parameters. This module aims at computing six types of autocorre-
lation, including dinucleotide-based auto covariance DAC, dinucleotide-based cross covariance
DCC, dinucleotide-based auto-cross covariance DACC, trinucleotide-based auto covariance TAC,
trinucleotide-based cross covariance TCC, and trinucleotide-based auto-cross covariance TACC.
Let’s introduce them one by one.

4.1. Dinucleotide-based auto covariance

Suppose a DNA sequence D with L nucleic acid residues; i.e.

D = R1R2R3R4R5R6R7 . . . RL

where R1 represents the nucleic acid residue at the sequence position 1, R2 the nucleic acid
residue at position 2 and so forth. The DAC measures the correlation of the same physico-
chemical index between two dinucleotide separated by a distance of lag along the sequence,
which can be calculated as:

DAC(u, lag) =

L−lag−1∑
i=1

(Pu(RiRi+1) − P̄u)(Pu(Ri+lagRi+lag+1) − P̄u)

L− lag − 1

where u is a physicochemical index, L is the length of the DNA sequence, Pu(RiRi+1) means
the numerical value of the physicochemical index u for the dinucleotide RiRi+1 at position
i, P̄u sequence: is the average value for physicochemical index u along the whole sequence:

P̄u =

L−1∑
j=1

Pu(RjRj+1)

L− 1

In such a way, the length of DAC feature vector is N ∗ LAG, where N is the number of
physicochemical indices and LAG is the maximum of lag (lag = 1, 2, . . ., LAG). This DAC

approach is similar as the approach used for DNA fold recognition (Dong et al. 2009).

7

The rDNAse Manual

extrDAC(x)

Twist.lag1 Twist.lag2 Tilt.lag1 Tilt.lag2

-0.305 0.167 -0.181 0.157

phyche_index = data.frame(cust1 = c(2.26, 3.03, 2.03, 3.83, 1.78, 1.65, 2.00,

2.03, 1.93, 2.61, 1.65, 3.03, 1.20, 1.93, 1.78, 2.26), cust2 = c(7.65, 8.93,

7.08, 9.07, 6.38, 8.04, 6.23, 7.08, 8.56, 9.53, 8.04, 8.93, 6.23, 8.56, 6.38,

7.65))

customprops = t(phyche_index)

colnames(customprops) = make_kmer_index(2, alphabet = "ACGT")

extrDAC(x, normaliztion = TRUE, customprops = customprops)

Twist.lag1 Twist.lag2 Tilt.lag1 Tilt.lag2 cust1.lag1 cust1.lag2

-0.305 0.167 -0.181 0.157 -0.195 0.082

cust2.lag1 cust2.lag2

-0.521 0.157

4.2. Dinucleotide-based cross covariance

Given a DNA sequence D, the DCC approach measures the correlation of two different physic-
ochemical indices between two dinucleotides separated by lag nucleic acids along the sequence,
which can be calculated by:

DCC(u1, u2, lag) =

L−lag−1∑
i=1

(Pu1(RiRi+1) − P̄u1)(Pu2(Ri+lagRi+lag+1) − P̄u2)

L− lag − 1

where u1, u2 are two different physicochemical indices, L is the length of the DNA sequence,
Pu1(RiRi+1)(Pu2(RiRi+1)) is the numerical value of the physicochemical index u1(u2)
for the dinucleotide at position i, P̄u1(P̄u2) is the average value for physicochemical index
value u1, u2 along the whole sequence:

In such a way, the length of the DCC feature vector is N∗(N-1)∗LAG, where N is the number
of physicochemical indices and LAG is the maximum of lag (lag=1, 2, . . ., LAG).

This DCC approach is similar as the approach used for DNA fold recognition (Dong et al.
2009).

extrDCC(x)

Twist.Tilt.lag.1 Twist.Tilt.lag.2 Tilt.Twist.lag.1 Tilt.Twist.lag.2

-0.281 0.144 -0.287 0.206

phyche_index = data.frame(cust1 = c(2.26, 3.03, 2.03, 3.83, 1.78, 1.65, 2.00,

2.03, 1.93, 2.61, 1.65, 3.03, 1.20, 1.93, 1.78, 2.26), cust2 = c(7.65, 8.93,

8

The rDNAse Manual

7.08, 9.07, 6.38, 8.04, 6.23, 7.08, 8.56, 9.53, 8.04, 8.93, 6.23, 8.56, 6.38,

7.65))

customprops = t(phyche_index)

colnames(customprops) = make_kmer_index(2, alphabet = "ACGT")

extrDCC(x, normaliztion = TRUE, customprops = customprops)

Twist.Tilt.lag.1 Twist.Tilt.lag.2 Tilt.Twist.lag.1 Tilt.Twist.lag.2

-0.281 0.144 -0.288 0.206

Twist.cust1.lag.1 Twist.cust1.lag.2 cust1.Twist.lag.1 cust1.Twist.lag.2

-0.322 0.215 -0.123 0.080

Twist.cust2.lag.1 Twist.cust2.lag.2 cust2.Twist.lag.1 cust2.Twist.lag.2

-0.434 0.261 -0.239 0.139

Tilt.cust1.lag.1 Tilt.cust1.lag.2 cust1.Tilt.lag.1 cust1.Tilt.lag.2

-0.323 0.227 -0.115 0.073

Tilt.cust2.lag.1 Tilt.cust2.lag.2 cust2.Tilt.lag.1 cust2.Tilt.lag.2

-0.426 0.276 -0.144 0.075

cust1.cust2.lag.1 cust1.cust2.lag.2 cust2.cust1.lag.1 cust2.cust1.lag.2

-0.236 0.114 -0.405 0.237

4.3. Dinucleotide-based auto-cross covariance

DACC is a combination of DAC and DCC. Therefore, the length of the DACC feature vector
is N∗N∗LAG, where N is the number of physicochemical indices and LAG is the maximum
of lag (lag = 1, 2, . . ., LAG).

extrDACC(x)

Twist.lag1 Twist.lag2 Tilt.lag1 Tilt.lag2

-0.305 0.167 -0.181 0.157

Twist.Tilt.lag.1 Twist.Tilt.lag.2 Tilt.Twist.lag.1 Tilt.Twist.lag.2

-0.281 0.144 -0.287 0.206

phyche_index = data.frame(cust1 = c(2.26, 3.03, 2.03, 3.83, 1.78, 1.65, 2.00,

2.03, 1.93, 2.61, 1.65, 3.03, 1.20, 1.93, 1.78, 2.26), cust2 = c(7.65, 8.93,

7.08, 9.07, 6.38, 8.04, 6.23, 7.08, 8.56, 9.53, 8.04, 8.93, 6.23, 8.56, 6.38,

7.65))

customprops = t(phyche_index)

colnames(customprops) = make_kmer_index(2, alphabet = "ACGT")

extrDACC(x, normaliztion = TRUE, customprops = customprops)

Twist.lag1 Twist.lag2 Tilt.lag1 Tilt.lag2

-0.305 0.167 -0.181 0.157

cust1.lag1 cust1.lag2 cust2.lag1 cust2.lag2

-0.195 0.082 -0.521 0.157

Twist.Tilt.lag.1 Twist.Tilt.lag.2 Tilt.Twist.lag.1 Tilt.Twist.lag.2

9

The rDNAse Manual

-0.281 0.144 -0.288 0.206

Twist.cust1.lag.1 Twist.cust1.lag.2 cust1.Twist.lag.1 cust1.Twist.lag.2

-0.322 0.215 -0.123 0.080

Twist.cust2.lag.1 Twist.cust2.lag.2 cust2.Twist.lag.1 cust2.Twist.lag.2

-0.434 0.261 -0.239 0.139

Tilt.cust1.lag.1 Tilt.cust1.lag.2 cust1.Tilt.lag.1 cust1.Tilt.lag.2

-0.323 0.227 -0.115 0.073

Tilt.cust2.lag.1 Tilt.cust2.lag.2 cust2.Tilt.lag.1 cust2.Tilt.lag.2

-0.426 0.276 -0.144 0.075

cust1.cust2.lag.1 cust1.cust2.lag.2 cust2.cust1.lag.1 cust2.cust1.lag.2

-0.236 0.114 -0.405 0.237

4.4. Trinucleotide-based auto covariance

Given a DNA sequence D, the TAC approach measures the correlation of the same physico-
chemical index between two trinucleotides separated by lag nucleic acids along the sequence,
which can be calculated as:

TAC(u, lag) =

L−lag−2∑
i=1

(Pu(RiRi+1Ri+2) − P̄u)(Pu(Ri+lagRi+lag+1Ri+lag+2) − P̄u)

L− lag − 2

where u is a physicochemical index, L is the length of the DNA sequence, Pu(RiRi+1Ri+2)
represents the numerical value of the physicochemical index u for the trinucleotideRiRi+1Ri+2

at position i, P̄u is the average value for physicochemical index u value along the whole se-
quence:

P̄u =

L−2∑
j=1

Pu(RjRj+1Rj+2)

L− 2

In such a way, the length of TAC feature vector is N∗LAG, where N is the number of physic-
ochemical indices and LAG is the maximum of lag (lag=1, 2, . . ., LAG).

extrTAC(x)

Dnase I.lag1 Dnase I.lag2 Nucleosome.lag1 Nucleosome.lag2

0.253 -0.037 0.482 0.009

phyche_index = data.frame(cust = c(7.176, 6.272, 4.736, 7.237, 3.810, 4.156,

4.156, 6.033, 3.410, 3.524, 4.445, 6.033, 1.613, 5.087, 2.169, 7.237, 3.581,

3.239, 1.668, 2.169, 6.813, 3.868, 5.440, 4.445, 3.810, 4.678, 5.440, 4.156,

2.673, 3.353, 1.668, 4.736, 4.214, 3.925, 3.353, 5.087, 2.842, 2.448, 4.678,

3.524, 3.581, 2.448, 3.868, 4.156, 3.467, 3.925, 3.239, 6.272, 2.955, 3.467,

2.673, 1.613, 1.447, 3.581, 3.810, 3.410, 1.447, 2.842, 6.813, 3.810, 2.955,

4.214, 3.581, 7.176))

10

The rDNAse Manual

customprops = t(phyche_index)

colnames(customprops) = make_kmer_index(3, alphabet = "ACGT")

extrTAC(x, normaliztion = TRUE, customprops = customprops)

Dnase I.lag1 Dnase I.lag2 Nucleosome.lag1 Nucleosome.lag2

0.249 -0.037 0.474 0.009

cust.lag1 cust.lag2

0.144 -0.035

4.5. Trinucleotide-based cross covariance

Given a DNA sequenceD, the TCC approach measures the correlation of two different physic-
ochemical indices between two trinucleotides separated by lag nucleic acids along the sequence,
which can be calculated by:

TCC(u1, u2, lag) =

L−lag−2∑
i=1

(Pu1(RiRi+1Ri+2) − P̄u1)(Pu2(Ri+lagRi+lag+1Ri+lag+2) − P̄u2)

L− lag − 2

where u1, u2 are two physicochemical indices, L is the length of the DNA sequence,Pu1(RiRi+1Ri+2)
(Pu2(RiRi+1Ri+2)) represents the numerical value of the physicochemical index u1(u2) for
the trinucleotide RiRi+1Ri+2 at position i,

P̄u =

L−2∑
j=1

Pu(RjRj+1Rj+2)

L− 2

In such a way, the length of TCC feature vector is N∗(N-1)∗LAG, where N is the number of
physicochemical index and LAG is the maximum of lag (lag = 1, 2, . . ., LAG).

extrTCC(x)

Dnase I.Nucleosome.lag.1 Dnase I.Nucleosome.lag.2 Nucleosome.Dnase I.lag.1

-0.375 -0.042 -0.294

Nucleosome.Dnase I.lag.2

0.095

phyche_index = data.frame(cust = c(7.176, 6.272, 4.736, 7.237, 3.810, 4.156,

4.156, 6.033, 3.410, 3.524, 4.445, 6.033, 1.613, 5.087, 2.169, 7.237, 3.581,

3.239, 1.668, 2.169, 6.813, 3.868, 5.440, 4.445, 3.810, 4.678, 5.440, 4.156,

2.673, 3.353, 1.668, 4.736, 4.214, 3.925, 3.353, 5.087, 2.842, 2.448, 4.678,

3.524, 3.581, 2.448, 3.868, 4.156, 3.467, 3.925, 3.239, 6.272, 2.955, 3.467,

2.673, 1.613, 1.447, 3.581, 3.810, 3.410, 1.447, 2.842, 6.813, 3.810, 2.955,

4.214, 3.581, 7.176))

customprops = t(phyche_index)

colnames(customprops) = make_kmer_index(3, alphabet = "ACGT")

extrTCC(x, normaliztion = TRUE, customprops = customprops)

11

The rDNAse Manual

Dnase I.Nucleosome.lag.1 Dnase I.Nucleosome.lag.2 Nucleosome.Dnase I.lag.1

-0.369 -0.041 -0.289

Nucleosome.Dnase I.lag.2 Dnase I.cust.lag.1 Dnase I.cust.lag.2

0.093 0.145 -0.097

cust.Dnase I.lag.1 cust.Dnase I.lag.2 Nucleosome.cust.lag.1

0.207 0.009 -0.136

Nucleosome.cust.lag.2 cust.Nucleosome.lag.1 cust.Nucleosome.lag.2

0.170 -0.275 -0.065

4.6. Trinucleotide-based auto-cross covariance

TACC is a combination of TAC and TCC. Therefore, the length of the TACC feature vector
is N∗N∗LAG, where N is the number of physicochemical indices and LAG is the maximum
of lag (lag = 1, 2, . . ., LAG).

extrTACC(x)

Dnase I.lag1 Dnase I.lag2 Nucleosome.lag1

0.253 -0.037 0.482

Nucleosome.lag2 Dnase I.Nucleosome.lag.1 Dnase I.Nucleosome.lag.2

0.009 -0.375 -0.042

Nucleosome.Dnase I.lag.1 Nucleosome.Dnase I.lag.2

-0.294 0.095

phyche_index = data.frame(cust = c(7.176, 6.272, 4.736, 7.237, 3.810, 4.156,

4.156, 6.033, 3.410, 3.524, 4.445, 6.033, 1.613, 5.087, 2.169, 7.237, 3.581,

3.239, 1.668, 2.169, 6.813, 3.868, 5.440, 4.445, 3.810, 4.678, 5.440, 4.156,

2.673, 3.353, 1.668, 4.736, 4.214, 3.925, 3.353, 5.087, 2.842, 2.448, 4.678,

3.524, 3.581, 2.448, 3.868, 4.156, 3.467, 3.925, 3.239, 6.272, 2.955, 3.467,

2.673, 1.613, 1.447, 3.581, 3.810, 3.410, 1.447, 2.842, 6.813, 3.810, 2.955,

4.214, 3.581, 7.176))

customprops = t(phyche_index)

colnames(customprops) = make_kmer_index(3, alphabet = "ACGT")

extrTACC(x, normaliztion = TRUE, customprops = customprops)

Dnase I.lag1 Dnase I.lag2 Nucleosome.lag1

0.249 -0.037 0.474

Nucleosome.lag2 cust.lag1 cust.lag2

0.009 0.144 -0.035

Dnase I.Nucleosome.lag.1 Dnase I.Nucleosome.lag.2 Nucleosome.Dnase I.lag.1

-0.369 -0.041 -0.289

Nucleosome.Dnase I.lag.2 Dnase I.cust.lag.1 Dnase I.cust.lag.2

0.093 0.145 -0.097

cust.Dnase I.lag.1 cust.Dnase I.lag.2 Nucleosome.cust.lag.1

0.207 0.009 -0.136

Nucleosome.cust.lag.2 cust.Nucleosome.lag.1 cust.Nucleosome.lag.2

0.170 -0.275 -0.065

12

The rDNAse Manual

5. Pseudo nucleic acid composition

PseNAC is a kind of powerful approaches to represent the DNA sequences considering both
DNA local sequence-order information and long range or global sequence-order effects. Mod-
ule psenac (psenac is the abbreviation of pseudo nucleic acid composition) in repDNA allows
users to generate various kinds of PseNAC- based feature vectors for given sequences or FASTA
files by selecting different methods and parameters. This module aims at computing six types
of pseudo nucleic acid composition: pseudo dinucleotide composition (PseDNC), pseudo k-
tuple nucleotide composition (PseKNC), parallel correlation pseudo dinucleotide composition
(PC-PseDNC), parallel correlation pseudo trinucleotide composition (PC-PseTNC), series
correlation pseudo dinucleotide composition (SC-PseDNC), and series correlation pseudo trin-
ucleotide composition (SC-PseTNC). Let’s introduce them one by one.

5.1. Pseudo dinucleotide composition

PseDNC is an approach incorporating the contiguous local sequence-order information and
the global sequence-order information into the feature vector of the DNA sequence.

Given a DNA sequence D, the feature vector of D is defined:

D = [d1d2 . . . d16d16+1 . . . d16+λ]T

where

dk =

fk∑16

i=1 fi + w
∑λ
j=1 θj

1 ≤ k ≤ 16

wθk−16∑16
i=1 fi + w

∑λ
j=1 θj

17 ≤ k ≤ 16 + λ

where fk (k = 1, 2, . . ., 16) is the normalized occurrence frequency of dinucleotide in the
DNA sequence; the parameter λ is an integer, representing the highest counted rank(or tier)
of the correlation along a DNA sequence; w is the weight factor ranged from 0 to 1; θj (j =
1, 2, . . ., λ) is called the j-tier correlation factor that reflects the sequence order correlation
between all the most contiguous dinucleotide along a DNA sequence, which is defined:

θ1 =
1

L− 2

L−2∑
i=1

Θ(RiRi+1, Ri+1Ri+2)

θ2 =
1

L− 3

L−3∑
i=1

Θ(RiRi+1, Ri+2Ri+3)

λ < L

θ3 =
1

L− 4

L−4∑
i=1

Θ(RiRi+1, Ri+3Ri+4)

. . .

θ1 =
1

L− 1 − λ

L−1−λ∑
i=1

Θ(RiRi+1, Ri+λRi+λ+1)

13

The rDNAse Manual

where the correlation function is given by

Θ(RiRi+1, RjRj+1) =
1

u

u∑
u=1

[Pu(RiRi+1) − Pu(RjRj+1)]2

where µ is the number of physicochemical indices, in this study, 6 indices reflecting the local
DNA structural properties were employed to generate the PseDNCfeature vector;Pu(RiRi+1)
represents the numerical value of the u-th (u = 1, 2, . . ., µ) physicochemical index of the
dinucleotide RiRi+1 at position i and Pu(RjRj+1) represents the corresponding value of
the dinucleotide RjRj+1 at position j. For more information about this approach, please
refer to (Chen et al. 2013).

extrPseDNC(x)

Xc1.AA Xc1.AC Xc1.AG Xc1.AT Xc1.CA

0.044 0.044 0.029 0.029 0.044

Xc1.CC Xc1.CG Xc1.CT Xc1.GA Xc1.GC

0.087 0.073 0.087 0.029 0.102

Xc1.GG Xc1.GT Xc1.TA Xc1.TC Xc1.TG

0.044 0.029 0.015 0.073 0.058

Xc1.TT Xc2.lambda.1 Xc2.lambda.2 Xc2.lambda.3

0.029 0.075 0.047 0.065

phyche_index = data.frame(cust1 = c(1.019, -0.918, 0.488, 0.567, 0.567,

-0.070, -0.579, 0.488, - 0.654, -2.455,-0.070, -0.918, 1.603, -0.654,

0.567, 1.019))

customprops = t(phyche_index)

colnames(customprops) = make_kmer_index(2, alphabet = "ACGT")

extrPseDNC(x, normalize = TRUE, customprops = customprops, lambda = 2,

w = 0.1)

Xc1.AA Xc1.AC Xc1.AG Xc1.AT Xc1.CA

0.038 0.038 0.025 0.025 0.038

Xc1.CC Xc1.CG Xc1.CT Xc1.GA Xc1.GC

0.076 0.063 0.076 0.025 0.088

Xc1.GG Xc1.GT Xc1.TA Xc1.TC Xc1.TG

0.038 0.025 0.013 0.063 0.051

Xc1.TT Xc2.lambda.1 Xc2.lambda.2

0.025 0.175 0.118

5.2. Pseudo k-tupler composition

PseKNC improved the PseDNC approach by incorporating k-tuple nucleotide composition.
Given a DNA sequence D, the feature vector of D is defined:

D = [d1d2 . . . d4kd4k+1 . . . d4k+λ]T

14

The rDNAse Manual

du =

fu∑4k

i=1 fi + w
∑λ
j=1 θj

1 ≤ u ≤ 4k

wθu−4k∑4k

i=1 fi + w
∑λ
j=1 θj

4k ≤ u ≤ 4k + λ

where λ is the number of the total counted ranks (or tiers) of the correlations along a DNA
sequence; fu (u = 1, 2, . . ., 4k) is the frequency of oligonucleotide that is normalized to∑4k

i=1 fi = 1; w is a weight factor; θj is given by:

θj =
1

L− j − 1

L−j−1∑
i=1

Θ(RiRi1, Ri+jRi+j+1) j = 1, 2, . . . , λ;λ < L

which represents the j-tier structural correlation factor between all the jth most contiguous
dinucleotides. The correlation function Θ(RiRi1, Ri+jRi+j+1) is defined by

Θ(RiRi+1, Ri+jRi+j+1) =
1

u

u∑
v=1

[Pv(RiRi+1) − Pv(Ri+jRi+j+1)]2

where µ is the number of physicochemical indices, in this study, 6 indices reflecting the
local DNA structural properties were employed to generate the PseKNC feature vector;
Pv(RiRi+1) represents the numerical value of the v-th (u = 1, 2, . . . , µ) physicochemi-
cal indices for the dinucleotide RiRi+1 at position i and Pv(Ri+jRi+j+1) represents the
corresponding value for the dinucleotide Ri+jRi+j+1 atposition i+ j. For more information
about this approach, please refer to (Guo et al. 2014).

extrPseKNC(x)

Xc1.AAA Xc1.AAC Xc1.AAG Xc1.AAT Xc1.ACA

0.008 0.000 0.008 0.008 0.008

Xc1.ACC Xc1.ACG Xc1.ACT Xc1.AGA Xc1.AGC

0.000 0.000 0.017 0.000 0.017

Xc1.AGG Xc1.AGT Xc1.ATA Xc1.ATC Xc1.ATG

0.000 0.000 0.000 0.000 0.008

Xc1.ATT Xc1.CAA Xc1.CAC Xc1.CAG Xc1.CAT

0.008 0.008 0.008 0.000 0.008

Xc1.CCA Xc1.CCC Xc1.CCG Xc1.CCT Xc1.CGA

0.000 0.008 0.025 0.017 0.008

Xc1.CGC Xc1.CGG Xc1.CGT Xc1.CTA Xc1.CTC

0.008 0.008 0.017 0.000 0.017

Xc1.CTG Xc1.CTT Xc1.GAA Xc1.GAC Xc1.GAG

0.025 0.008 0.000 0.008 0.008

Xc1.GAT Xc1.GCA Xc1.GCC Xc1.GCG Xc1.GCT

0.000 0.008 0.034 0.008 0.008

Xc1.GGA Xc1.GGC Xc1.GGG Xc1.GGT Xc1.GTA

0.008 0.008 0.008 0.000 0.008

15

The rDNAse Manual

Xc1.GTC Xc1.GTG Xc1.GTT Xc1.TAA Xc1.TAC

0.008 0.000 0.000 0.000 0.008

Xc1.TAG Xc1.TAT Xc1.TCA Xc1.TCC Xc1.TCG

0.000 0.000 0.008 0.008 0.008

Xc1.TCT Xc1.TGA Xc1.TGC Xc1.TGG Xc1.TGT

0.008 0.000 0.025 0.008 0.000

Xc1.TTA Xc1.TTC Xc1.TTG Xc1.TTT Xc2.lambda.1

0.000 0.017 0.000 0.000 0.533

phyche_index = data.frame(cust1 = c(1.019, -0.918, 0.488, 0.567, 0.567,

-0.070, -0.579, 0.488, - 0.654, -2.455,-0.070, -0.918, 1.603, -0.654,

0.567, 1.019))

customprops = t(phyche_index)

colnames(customprops) = make_kmer_index(2, alphabet = "ACGT")

extrPseKNC(x, normalize = TRUE, customprops = customprops, lambda = 1,

w = 0.05, k = 2)

Xc1.AA Xc1.AC Xc1.AG Xc1.AT Xc1.CA

0.048 0.048 0.032 0.032 0.048

Xc1.CC Xc1.CG Xc1.CT Xc1.GA Xc1.GC

0.096 0.080 0.096 0.032 0.112

Xc1.GG Xc1.GT Xc1.TA Xc1.TC Xc1.TG

0.048 0.032 0.016 0.080 0.064

Xc1.TT Xc2.lambda.1

0.032 0.104

6. Similarity Calculation by Sequence Alignment

Similarity computation derived by local or global DNA sequence alignment between a list of
DNA sequences is great need in the DNA related research and applications. However, this
sort of pairwise similarity computation often computationally intensive, especially when there
exists many DNA sequences. Luckily, this process is also highly parallelizable, the rDNAse
package integrates the function of parallelized similarity computation derived by local or
global DNA sequence alignment between a list of DNA sequences.

The function twoSeqSim() calculates the alignment result between two DNA sequences, and
the function parSeqSim() calculates the pairwise similarity calculation with a list of DNA
sequences in parallel:

> s1 = readFASTA(system.file('dnaseq/P00750.fasta', package = 'rDNAse'))[[1]]
> s2 = readFASTA(system.file('dnaseq/P08218.fasta', package = 'rDNAse'))[[2]]
> s3 = readFASTA(system.file('dnaseq/P10323.fasta', package = 'rDNAse'))[[3]]
> s4 = readFASTA(system.file('dnaseq/P20160.fasta', package = 'rDNAse'))[[4]]
> s5 = readFASTA(system.file('dnaseq/Q9NZP8.fasta', package = 'rDNAse'))[[5]]
> plist = list(s1, s2, s3, s4, s5)

16

The rDNAse Manual

> psimmat = parSeqSim(plist, cores = 4, type = 'local', submat = 'BLOSUM62')
> print(psimmat)

[,1] [,2] [,3] [,4] [,5]

[1,] 1.0000000 0.3330758 0.2763540 0.3044898 0.3408780

[2,] 0.3330758 1.0000000 0.3321031 0.3272556 0.3134858

[3,] 0.2763540 0.3321031 1.0000000 0.2962784 0.3000359

[4,] 0.3044898 0.3272556 0.2962784 1.0000000 0.2944940

[5,] 0.3408780 0.3134858 0.3000359 0.2944940 1.0000000

It should be noted that for a small number of DNAs, calculating their pairwise similarity
scores derived by sequence alignment in parallel may not significantly reduce the overall
computation time, since each of the task only requires a relatively small time to finish, thus,
computational overheads may exist and affect the performance. In testing, we used about
1,000 DNA sequences on 64 CPU cores, and observed significant performance improvement
comparing to the sequential computation.

Users should install the packages foreach and doParallel before using parSeqSim(), according
to their operation system. The rDNAse package will automatically decide which backend to
use.

7. Similarity Calculation by GO Semantic Similarity Measures

The rDNAse package also integrates the function of similarity score computation derived by
Gene Ontology (GO) semantic similarity measures between a list of GO terms / Entrez Gene
IDs.

The function twoGOSim() calculates the similarity derived by GO-terms semantic similarity
measures between two GO terms / Entrez Gene IDs, and the function parGOSim() calculates
the pairwise similarity with a list of GO terms / Entrez Gene IDs:

by GO Terms

> go1 = c('GO:0005215', 'GO:0005488', 'GO:0005515',
+ 'GO:0005625', 'GO:0005802', 'GO:0005905') # AP4B1

> go2 = c('GO:0005515', 'GO:0005634', 'GO:0005681',
+ 'GO:0008380', 'GO:0031202') # BCAS2

> go3 = c('GO:0003735', 'GO:0005622', 'GO:0005840',
+ 'GO:0006412') # PDE4DIP

> glist = list(go1, go2, go3)

> gsimmat1 = parGOSim(glist, type = 'go', ont = 'CC')
> print(gsimmat1)

[,1] [,2] [,3]

[1,] 1.000 0.077 0.055

[2,] 0.077 1.000 0.220

[3,] 0.055 0.220 1.000

by Entrez gene id

> genelist = list(c('150', '151', '152', '1814', '1815', '1816'))

17

The rDNAse Manual

> gsimmat2 = parGOSim(genelist, type = 'gene')
> print(gsimmat2)

150 151 152 1814 1815 1816

150 0.689 0.335 0.487 0.133 0.169 0.160

151 0.335 0.605 0.441 0.171 0.198 0.274

152 0.487 0.441 0.591 0.151 0.178 0.198

1814 0.133 0.171 0.151 0.512 0.401 0.411

1815 0.169 0.198 0.178 0.401 0.619 0.481

1816 0.160 0.274 0.198 0.411 0.481 0.819

8. Miscellaneous Tools

In this section, we will briefly introduce some useful tools provided by the rDNAse package.

8.1. Retrieve DNA Sequences from UniProt

This function getGenbank() gets DNA sequences from Genbank by GI ID(s). The input ID

is a character vector specifying the GI ID(s). The returned sequences are stored in a list:

> ids = c('2', '392893239', '357180087')
> dnas = getGenbank(ids)

> print(dnas)

$gi_2

[1] "AATTCATGCGTCCGGACTTCTGCCTCGAGCCGCCGTACACTGGGCCCTGCAAAGCTCGTATCATCCGTTACT

TCTACAATGCAAAGGCAGGCCTGTGTCAGACCTTCGTATACGGCGGTTGCCGTGCTAAGCGTAACAACTTCAAATCC

GCGGAAGACTGCGAACGTACTTGCGGTGGTCCTTAGTAAAGCTTG"

$gi_392893239

[1] "GCCTAAAGACGACCGCGACGCGGCCGCTCGCACTCATAGACTACGCTAGTGGTGAGATACGCAGAGAAAAAG

ACGAGAGAGTATTGAGAGAATGGAGACATCACTACATCTAACATAGGGTCGCCAGTCGTCACCGAATTATTGGATTC

AAATTTAGGTCCC"

$gi_357180087

[1] "TTAAAGGGGACGTGGCCATTGGCCAGCTCACAGGCCGTGATTCCCACACTGTAGATGTCAGACTTGGCATCG

TAACCCTGGAGATTCTGCTGGAGGACCTCTGGGCTGAGCCAGGGCAGAACCTTGATACTGTACTTGGGGAAGTCGTG

GACCACACGCTGCCGCTGCCCGTGGCTGATCATGCTGAGGTTGCTTCGTAAACCTGACAGGTAGACCTTCCCATCAG

CGGAGATCAGAACGTGGCTGGCTTTGACGCTCCTGTGCACGTAGCCCATGTGGTGGATGTAATCCAAGGCCTTGAGC

GCCCCCTGCAGGATGTAAGCGATGGCCAGCTCGCTCATGCCGTCCATGAAGTGCGTGCAGATGAGGTCCTTGGCCGA

GCCGTATGCCATGAACGACGTGACGACCCACAGCTCGTTGTCCGCGATGAAGGTGGCTCCGTAGGGCAGGATGTTGG

GGTGGCTGAAGAGTTTAGAGACATGGAGTTCCCCCTGTAAGAACGTCACCATCTCGTTGGAGCAAGCCTCGAGGTTA

ATCCTTCGTACCGTCACATACTCCCCTGTTGGTTTGTACCTTGCTAGATTCACTGTCATCAGGTCCTCGAATCCTTT

GCCTATAACGGTGAGCAGCTCATAACACCCTCCCTCTGGCAGGAAGCTACTCATGATCTCCGGCTTAGAGAAGGGTG

CTATCGACTCTGAGCTCGCCTCATTGGTAAGAAAAGACATGAGTTCCTAACGTGTAGACCTACTTCAATTTCAAAAA

TTTAAACCTGGTCCTGGAGTTAGCAAGCAGTCCCGGCCCAGTCTCAGCTCCGCCTCCTTGGGTTAAGGCCCG"

18

The rDNAse Manual

8.2. Read FASTA Format files

The readFASTA() function provides a convenient way to read DNA sequences stored in FASTA
format files. See ?readFASTA for details. The returned sequences are stored in a named list,
whose components are named with the DNA sequences’ names.

8.3. Sanity Check of the Deoxyribonucleic Acid Types

The dnacheck() function checks if the DNA sequence’s deoxyribonucleic acids types are in
the 4 default types, which returns a TRUE if all the deoxyribonucleic acids in the sequence
belongs to the 4 default types:

x = readFASTA(system.file('dnaseq/hs.fasta', package = 'rDNAse'))[[1]]
A real sequence

dnacheck(x)

[1] TRUE

An artificial sequence

dnacheck(paste(x, 'Z', sep = ''))

[1] FALSE

9. Summary

The summary of the descriptors in the rDNAse package is listed in table 1.

Table 1: List of commonly used descriptors in rDNAse

Descriptor Group Descriptor Name Descriptor Dimension Function Name

Nucleic acid composition Basic kmer 161 kmer()

Reverse compliment kmer 101 kmer()

Increment of diversity 122 make_idkmer_vec()

Autocorrelation Dinucleotide-based auto covariance 43 extrDAC()

Dinucleotide-based cross covariance 43 extrDCC()

Dinucleotide-based auto-cross covariance 83 extrDACC()

Trinucleotide-based auto covariance 43 extrTAC()

Trinucleotide-based cross covariance 43 extrTCC()

Trinucleotide-based auto-cross covari-
ance

83 extrTACC()

Pseudo nucleotide compo-
sition

Pseudo dinucleotide composition 194 extrPseDNC()

Pseudo k-tupler nucleotide composition 655 extrPseKNC()

Similarity calculation Sequence alignment parSeqSim()

GO semantic similarity measures parGOSim()

19

The rDNAse Manual

The summary of the names of the 38 physicochemical indices for dinucleotides. in the rDNAse
package is listed in table 2.

Table 2: The names of the 38 physicochemical indices for dinucleotides

Base stacking DNA induced deformability B-DNA twist
Propeller twist Propeller twist Duplex stability: (freeenergy)
DNA denaturation Bending stiffness DNA DNA twist
Aida BA transition Breslauer dG Breslauer dH
Electron interaction Hartman trans free energy Helix-Coil transition
Lisser BZ transition Polar interaction SantaLucia dG
SantaLucia dS Sarai flexibility Stability
Sugimoto dG Sugimoto dH Sugimoto dS
Duplex tability (disruptenergy) Stabilising energy of Z-DNA Breslauer dS
Ivanov BA transition SantaLucia dH Stacking energy
Watson-Crick interaction Dinucleotide GC Content Twist
Tilt Roll Shift
Slide Rose

The summary of the names of the 12 physicochemical indices for trinucleotides. in the rDNAse
package is listed in table 3.

Table 3: The names of the 12 physicochemical indices for trinucleotides.

Bendability (DNAse) Bendability (consensus) Trinucleotide GC Content
Consensus roll Consensus-Rigid Dnase I
MW-Daltons MW-kg Nucleosome
Nucleosome positioning Dnase I-Rigid Nucleosome-Rigid

The summary of the names of the 6 physicochemical indices for dinucleotides. in the rDNAse
package is listed in table 4.

Table 4: The names of the 6 physicochemical indices for dinucleotides.

Twist Tilt Roll
Shift Slide Rise

In this manual, we discussed the functions of the rDNAse package, which is trying to offer
a comprehensive and unique toolkit for DNA sequence descriptor calculation and similarity
computation.

Acknowledgments

This work is financially supported by the National key basic research program (2015CB910700),
the National Natural Science Foundation of China (Grants No. 81402853), grants from the

1The number depends on the choice of the k value of kmer. The default is k = 2.
2The number depends on the choice of the k value of kmer. The default is k = 6.
3The number depends on the maximum value of lag. By default lag = 2. And the number of the

physicochemical indices, By default the length of index = 2.
4The number depends on the maximum value of lambda. By default lambda = 3.
5The number depends on the maximum value of lambda. By default lambda = 1.

20

The rDNAse Manual

Project of Innovation-driven Plan in Central South University, and the Postdoctoral Sci-
ence Foundation of Central South University, the Chinese Postdoctoral Science Foundation
(2014T70794, 2014M562142). The studies meet with the approval of the university’s review
board.

21

The rDNAse Manual

References

Chen W, Feng PM, Lin H, Chou KC (2013). “iRSpot-PseDNC: identify recombination spots
with pseudo dinucleotide composition.” Nucleic acids research, p. gks1450.

Chen W, Lei TY, Jin DC, Lin H, Chou KC (2014). “PseKNC: a flexible web server for
generating pseudo K-tuple nucleotide composition.” Analytical biochemistry, 456, 53–60.

Chen W, Luo L, Zhang L (2010). “The organization of nucleosomes around splice sites.”
Nucleic acids research, 38(9), 2788–2798.

Dong Q, Zhou S, Guan J (2009). “A new taxonomy-based protein fold recognition approach
based on autocross-covariance transformation.” Bioinformatics, 25(20), 2655–2662.

Guo SH, Deng EZ, Xu LQ, Ding H, Lin H, Chen W, Chou KC (2014). “iNuc-PseKNC: a
sequence-based predictor for predicting nucleosome positioning in genomes with pseudo
k-tuple nucleotide composition.” Bioinformatics, p. btu083.

Gupta S, Dennis J, Thurman RE, Kingston R, Stamatoyannopoulos JA, Noble WS (2008).
“Predicting human nucleosome occupancy from primary sequence.” PLoS Comput Biol,
4(8), e1000134.

Lee D, Karchin R, Beer MA (2011). “Discriminative prediction of mammalian enhancers from
DNA sequence.” Genome research, 21(12), 2167–2180.

Liu G, Liu J, Cui X, Cai L (2012). “Sequence-dependent prediction of recombination hotspots
in Saccharomyces cerevisiae.” Journal of theoretical biology, 293, 49–54.

Lu J, Luo L (2008). “Prediction for human transcription start site using diversity measure
with quadratic discriminant.” Bioinformation, 2(7), 316–321.

Noble WS, Kuehn S, Thurman R, Yu M, Stamatoyannopoulos J (2005). “Predicting the in
vivo signature of human gene regulatory sequences.”Bioinformatics, 21(suppl 1), i338–i343.

Zhang L, Luo L (2003). “Splice site prediction with quadratic discriminant analysis using
diversity measure.” Nucleic Acids Research, 31(21), 6214–6220.

Affiliation:

Min-feng Zhu
the third xiangya hospital
School of Pharmaceutical Sciences
Central South University
Changsha, Hunan, P. R. China
E-mail: wind2zhu@163.com

22

mailto:wind2zhu@163.com

The rDNAse Manual

Jie Dong
School of Pharmaceutical Sciences
Central South University
Changsha, Hunan, P. R. China
E-mail: biomed@csu.edu.cn

Dong-Sheng Cao
School of Pharmaceutical Sciences
Central South University
Changsha, Hunan, P. R. China
E-mail: oriental-cds@163.com

23

mailto:biomed@csu.edu.cn
mailto:oriental-cds@163.com

	The Full Workflow Using rDNAse
	1. The Full Workflow Using rDNAse
	Package Overview
	2. Package Overview
	Commonly Used Descriptors
	3. Commonly Used Descriptors
	kmer
	Increment of diversity

	Autocorrelation
	4. Autocorrelation
	Dinucleotide-based auto covariance
	Dinucleotide-based cross covariance
	Dinucleotide-based auto-cross covariance
	Trinucleotide-based auto covariance
	Trinucleotide-based cross covariance
	Trinucleotide-based auto-cross covariance

	Pseudo nucleic acid composition
	5. Pseudo nucleic acid composition
	Pseudo dinucleotide composition
	Pseudo k-tupler composition

	Similarity Calculation by Sequence Alignment
	6. Similarity Calculation by Sequence Alignment
	Similarity Calculation by GO Semantic Similarity Measures
	7. Similarity Calculation by GO Semantic Similarity Measures
	Miscellaneous Tools
	8. Miscellaneous Tools
	Retrieve DNA Sequences from UniProt
	Read FASTA Format files
	Sanity Check of the Deoxyribonucleic Acid Types

	Summary
	9. Summary

