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1 Introduction

The Rolemodel package is intended to implement the model-based gene-set enrichment anal-
ysis method described in Wang et al. (2015). We call our method multi-functional analyzer,
or MFA for short. Our method is based on the role model, first proposed by Bauer et al.
(2010). In the role model, we have a finite number of wholes and parts; each whole is a set
of parts. In the gene set analysis problem, gene sets can be treated as wholes and genes as
parts; each gene set is a set of unordered genes. Two computational advances are developed
to do the posterior inference: one is the integer linear programming (MFA-ILP), from which
we can obtain the MAP (maximum a posteriori) estimate of active gene sets; the other is
the penalized MCMC (MFA-MCMC), from which we can obtain the posterior active prob-
ability for each gene set. We would like to use MFA-ILP as our primary tool, as it gives a
summary functional decoding of the gene list, while posterior probabilities from the MCMC
computation provide a measure of confidence in the inferred sets.

In this articel, we describe how to use the functions in the Rolemodel package. The function
sequentialRM performs the MFA-ILP computation, and the function bp performs the MFA-
MCMC. Generally, the input for MFA include a list of experimentally derived genes (e.g.,
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differentially expressed genes under different cell type conditions), the 0-1 incidence matrix
characterizing the inclusion relationship between wholes and parts, the system parameters
α (the false positive rate), γ (the true positive rate) and p (the prior active probability for
whole nodes), where α, γ and p are all numeric values between 0 and 1, and α is supposed to
be less than γ. We can estimate the values of α and γ from the gene-level data (see details in
Wang et al., 2015), and then estimate the value of p via the R package mgsa. In this article,
let’s assume that α, γ and p are known parameters.

2 Setup

Say we have a list of human genes, and we are interested in their gene-set enrichment. For
this example, I will sample a random set of 100 genes from the org.Hs.eg.db database.

> library(org.Hs.eg.db)

> genes <- sample(mappedRkeys(org.Hs.egSYMBOL),100)

> head(genes)

[1] "ACADL" "PEG3" "KPNA3" "OR5AQ1P"

[5] "LOC102723330" "RBMY1A3P"

Load the Rolemodel library.

> library(Rolemodel)

The gs2edge function will take this vector of genes, and create input objects for the ILP or
sequentialRM, and bp functions. Gene-set enrichment is based on Entrez-ID gene IDs; if
the gene list is composed of gene symbols, these will be converted to Entrez ID. n.upp and
n.low are the maximum and minimum gene-set sizes to consider in the enrichment analysis.
We recommend an n.upp <= 50 for ILP and sequentialRM due to computing time and
memory allocation.

> gs <- gs2edge(genes, n.upp=30, idtype="SYMBOL", lib="org.Hs.eg")

> I <- gs$I

> I[1:6,1:6]

GO:0000002 GO:0000012 GO:0000014 GO:0000028 GO:0000030 GO:0000038

100 0 0 0 0 0 0

1000 0 0 0 0 0 0

10000 1 0 0 0 0 0

10003 0 0 0 0 0 0

10005 0 0 0 0 0 0

10006 0 0 0 0 0 0
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> y <- gs$y

> head(y)

100 1000 10000 10003 10005 10006

0 0 0 0 0 0

> edge <- gs$edge

> head(edge)

go_id gene_id

3 GO:0001867 2

18 GO:0002921 2

34 GO:0007597 2

75 GO:0030449 2

108 GO:0045824 2

109 GO:0045916 2

3 Gene-set Enrichment

We will demonstrate the use of the ILP, sequentialRM, and bp using the t2d dataset, which
is included in the Rolemodel library. To speed processing time, we consider gene-sets with
5 to 20 genes. Use the subRM function to subset the I matrix.

> data(t2d)

> dim(t2d$I)

[1] 10626 6037

> sum(t2d$y)

[1] 58

> newI <- subRM(t2d$I, 5, 20)

> newy <- t2d$y[rownames(newI)]

> dim(newI)

[1] 8437 4449

> sum(newy)

[1] 52
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As mentioned before, we need to specify the values of α, γ and p before running MFA. The p

parameter can be estimated using the mgsa library, via the estP function. In this example,
we are already given p=0.00331. As an exercise, however, we estimate p:

> alpha <- 0.00019

> gamma <- 0.02279

> pest <- estP(I=newI, y=newy, alpha, gamma)

> pest

[1] 0.004495392

An internal study indicates that the algorithm is not overly sensitive to the exact settings of
these parameters, but to their range.

3.1 MFA-ILP: MAP estimate via integer linear programming

We use the R package Rglpk to do the integer linear programming, which is an R interface to
GNU Linear Programming Kit intending to solve large-scale linear programming problems.
The function ILP in our package is a wrapper designed for the specific gene-set problem by
invoking the function Rglpk_solve_LP in Rglpk directly.

> alpha <- 0.00019

> gamma <- 0.02279

> p <- 0.00331

> # do not run

> # res <- ILP(newI, newy, alpha, gamma, p)

It is very time-consuming to run ILP directly when the dimension of the incidence matrix
is kind of large. So one suggestion is that using the function sequentialRM rather than
ILP to do the ILP related computation. SequentialRM is a wrapper to implement the two
approaches (shrinkage and sequential strategy) developed in Wang et al. (2013) to speed up
the computation.

> res <- sequentialRM(newI, newy, nupstart=10, by=1, alpha, gamma, p)

[1] 11

[1] 12

[1] 13

[1] 14

[1] 15

[1] 16

[1] 17

[1] 18

[1] 19

[1] 20
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> str(res)

List of 2

$ onwholes: chr [1:8] "GO:0001714" "GO:0045725" "GO:2000679" "GO:0006983" ...

$ sol :List of 3

..$ optimum : num 44.1

..$ solution: Named num [1:122] 0 0 0 0 0 0 1 1 1 1 ...

.. ..- attr(*, "names")= chr [1:122] "GO:0032460" "GO:0032461" "GO:0032462" "GO:0032464" ...

..$ status : int 0

Here nupstart indicates the starting upper bound of the number of genes in a set, which is
used to subset the incidence matrix, and by indicates the increment of the upper bound for
each iteration in the sequential strategy. One suggestion is to set nupstart ≤ 10, and by

= 1. The output res is a list consisting of two parts. The first part onwholes includes the
names of identified active GO terms (gene sets), i.e., the MAP estimate. In this example,
there are totally 8 GO terms identified as active. The second part sol is extracted directly
from the output of function Rglpk_solve_LP in the package Rglpk, where optimum is the
value of the objective function at the optimum, solution is the vector of optimal coefficients
(0-1vector), and status is an integer with status information about the solution returned.
It will return 0 for the optimal solution being found, and non-zero otherwise. Actually, the
MAP estimate is just the whole nodes whose values are taking 1 in the optimal solution.

> names(res$sol$solution)[res$sol$solution == 1][1:8]

[1] "GO:0001714" "GO:0045725" "GO:2000679" "GO:0006983" "GO:0031017"

[6] "GO:0070365" "GO:0005638" "GO:0060395"

3.2 MFA-MCMC: the posterior active probability

The function bp is used to do the MCMC sampling. The input for bp is a bit different from
that in sequentialRM and is listed as follows:

• whole Vector of character strings with names of whole nodes

• part Vector of 0’s and 1’s indicating active part nodes; names are the names of the
part nodes

• edge Matrix with two columns; each row indicates an edge between a whole node and
a part node

• alpha, gamma, p the same as before

• nburn Number of burn-in generations

• ngen Number of sample generations

5



• sub Subsample rate for burn-in and sample files

• penalty Penalty per illegal node to loglikelihood

• initial Initial states of whole nodes, which can take one of three values: inactive -
all whole nodes inactive; random - all whole nodes active with probability p, no illegal
nodes; or high - all nodes with proportion of connected part nodes with response equal
to 1 above 0.4 are active, no illegal nodes.

> eout <- I2edge(newI)

> bp.out <- bp(whole=colnames(newI), part=newy, edge=eout, alpha, gamma, p,

nburn=1000000, ngen=10000000, sub=1000, penalty=5, initial="random")

> str(bp.out)

'data.frame': 4449 obs. of 6 variables:

$ Name : chr "GO:0000002" "GO:0000012" "GO:0000028" "GO:0000042" ...

$ ActiveProbability: num 0 0.00264 0.00224 0 0.00169 ...

$ Count : int 0 23899 20238 0 15233 0 54438 0 17841 20482 ...

$ Sample : int 9040135 9040135 9040135 9040135 9040135 9040135 9040135 9040135 9040135 9040135 ...

$ Degree : int 13 8 6 14 11 10 10 11 5 12 ...

$ Response : int 0 0 0 0 0 0 0 0 0 0 ...

- attr(*, "samples")= num [1:11000, 1:10] 1.91e-05 2.96e-03 2.70e-03 5.20e-12 1.37e-05 ...

..- attr(*, "dimnames")=List of 2

.. ..$ : NULL

.. ..$ : chr "AcceptanceProb" "LogLikelihood" "LogPrior" "ActiveOne" ...

Among the output of bp (see the help file for a full explanation), we are most interest
in the ActiveProbability, which is the posterior active probability for each whole node.
Generally, cut-off value 0.5 is used to pick GO terms as active.

> bp.out$Name[bp.out$ActiveProbability>0.5]

[1] "GO:0001714" "GO:0006983" "GO:0031017" "GO:0045725" "GO:0060612"

[6] "GO:0005638"

As a result, these GO terms can be seen as the active ones inferred from the MCMC sampling.

3.3 An integrative analysis function: summary of the result

As mentioned before, we would like to use MFA-ILP as our primary tool, while posterior
probabilities from the MCMC computation provide a measure of confidence in the inferred
sets. Of course, one can use the MCMC sampling result independently.
We would like to report the MAP estimate in the decreasing order of the posterior active
probabilities.
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> tmp <- bp.out$ActiveProbability[bp.out$Name%in%res$onwholes]

> ord <- order(tmp, decreasing = T)

> output<- data.frame(MAP = res$onwholes[ord], P.MFA = tmp[ord])

> print(output)

MAP P.MFA

1 GO:0006983 0.9844145

2 GO:2000679 0.9158180

3 GO:0045725 0.8785884

4 GO:0060395 0.8645420

5 GO:0001714 0.5389740

6 GO:0031017 0.4746733

7 GO:0070365 0.3299888

8 GO:0005638 0.1852368

On the other hand, we have also created an overall function rmTable to do both MFA-
ILP and MFA-MCMC analysis simultaneously. Thus users can take total control of the
parameters and interpret the result in an easier way. The input here is just a list of genes of
interest, e.g., which can be a list of differentially expressed genes according to some different
cellular conditions. The type of this gene list can be in Entrez ids, gene symbols, Ensembles,
etc. The output includes four parts: the first part is a summary data frame about the active
gene sets, including their GO terms, set size, number of associated genes included, and so on;
the second part is the solution of ILP calculation (the same as the output of sequentialRM);
the third part is the solution of MCMC calculation (the same as the output of bp); and the
last part is the incidence matrix and the response vector based on the input gene list. Notice
that since the up-to-date data source is used here, the result is slightly different from the
one obtained previously.

> data(T2D_genelist)

> idlist <- idlist[-57] ## no Entrez id for "KLHDC5"

> res <- rmTable (idlist, lib="org.Hs.eg", n.upp=20, n.low=5, nupstart=10, by=1, alpha=0.00019, gamma=0.02279, p=0.00331)

[1] 11

[1] 12

[1] 13

[1] 14

[1] 15

[1] 16

[1] 17

[1] 18

[1] 19

[1] 20

> str(res)
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List of 4

$ rm.table :'data.frame': 6 obs. of 7 variables:

..$ Term : chr [1:6] "lamin filament" "axolemma" "positive regulation of glycogen biosynthetic process" "regulation of transcription involved in cell fate commitment" ...

..$ Ontology : chr [1:6] "CC" "CC" "BP" "BP" ...

..$ MAP : Factor w/ 6 levels "GO:0005638","GO:0030673",..: 1 2 3 5 4 6

..$ P.MFA : num [1:6] 0.995 0.978 0.902 0.896 0.86 ...

..$ set.size : num [1:6] 5 12 15 20 7 6

..$ number.associated.genes: num [1:6] 2 2 5 3 2 4

..$ genes : Factor w/ 6 levels "AKT2;GCK;INS;INSR;IRS1",..: 4 2 1 6 3 5

$ rm.sol :List of 2

..$ onwholes: chr [1:6] "GO:0045725" "GO:0060261" "GO:0005638" "GO:2000675" ...

..$ sol :List of 3

.. ..$ optimum : num 50.8

.. ..$ solution: Named num [1:178] 0 0 0 0 0 0 0 1 1 1 ...

.. .. ..- attr(*, "names")= chr [1:178] "GO:0010898" "GO:0032000" "GO:0055015" "GO:0060449" ...

.. ..$ status : int 0

$ bp.sol :'data.frame': 5146 obs. of 6 variables:

..$ Name : chr [1:5146] "GO:0000002" "GO:0000012" "GO:0000014" "GO:0000028" ...

..$ ActiveProbability: num [1:5146] 0 0.00589 0.00222 0.0023 0.00166 ...

..$ Count : int [1:5146] 0 52556 19774 20474 14821 10684 44930 16304 0 0 ...

..$ Sample : int [1:5146] 8919158 8919158 8919158 8919158 8919158 8919158 8919158 8919158 8919158 8919158 ...

..$ Degree : int [1:5146] 20 8 6 8 17 15 5 11 13 6 ...

..$ Response : int [1:5146] 0 0 0 0 0 0 0 0 0 0 ...

..- attr(*, "samples")= num [1:11000, 1:10] 3.67e-14 2.96e-03 1.86e-05 2.70e-03 1.91e-05 ...

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : NULL

.. .. ..$ : chr [1:10] "AcceptanceProb" "LogLikelihood" "LogPrior" "ActiveOne" ...

$ incidence.mat:List of 3

..$ I : num [1:9397, 1:5146] 0 0 1 0 0 0 0 0 0 0 ...

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:9397] "100" "1000" "10000" "10003" ...

.. .. ..$ : chr [1:5146] "GO:0000002" "GO:0000012" "GO:0000014" "GO:0000028" ...

..$ y : Named num [1:9397] 0 0 0 0 0 0 0 0 0 0 ...

.. ..- attr(*, "names")= chr [1:9397] "100" "1000" "10000" "10003" ...

..$ edge:'data.frame': 51180 obs. of 2 variables:

.. ..$ go_id : chr [1:51180] "GO:0001867" "GO:0002921" "GO:0007597" "GO:0045916" ...

.. ..$ gene_id: chr [1:51180] "2" "2" "2" "2" ...

3.4 A plot function

In order to visualize the active gene sets, we make a plot function rmPlot to display an image
about the enriched gene sets and the associated genes contained by them. At the top row of
the plot, it’s the gene set having the highest overlap with the input gene list; then this gene
set and genes in this set are removed from the system. The second row will plot the gene set
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having the highest overlap with the remainder, and so on.

4 Discussion

The R package Rolemodel mainly implements two computational approaches in the gene-set
analysis problem: MFA-ILP and MFA-MCMC. When the system in consideration is large,
MFA-ILP usually has a long running time and a high requirement on the memory size, due
to the complexity of integer linear programming. We intend to develop an approximate
algorithm to compute a local maximum of the likelihood of role model. The local maximum
should be close to the real MAP estimate, while the computation time will be much faster.
At that time, a new wrapper will be added to the package to implement the approximate
algorithm. On the other hand, the estimation of parameters α, γ and p can be a potential
problem. We have developed some pipelines to estimate the values of α and γ; to develop
an approach to estimate p without the help of MGSA can contribute to make MFA as a
standalone gene-set enrichment method.
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> rmPlot(res[[4]]$I, res[[4]]$y, res[[2]]$onwholes)

10 20 30 40 50 60 70

GO:0030673

GO:0005638

GO:0060261

GO:0060850

GO:2000675

GO:0045725 positive regulation of glycogen biosynthetic process

negative regulation of type B pancreatic cell apoptotic process

regulation of transcription involved in cell fate commitment

positive regulation of transcription initiation from RNA polymerase II promoter

lamin filament

axolemma

Figure 1: Display the active gene sets. Top row is the gene set having the highest overlap
with the input gene list; then this gene set and genes in this set are removed from the system.
The second row is the gene set having the highest overlap with the remainder, and so on.
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