#' @title calculate FoldHit with error control
#' @description a function to search for FoldHit0 corresponding to the estimated value of FoldHit
#' @author Xiaohua Douglas Zhang 02/2020
#' @param Y1 a value or a vector for the first group (reference group)
#' @param Y2 a vector for the second group
#' @param Alpha the significant level
#' @param length.out the length of vectors of FoldHit0 candidate values for search FoldHit0.
#' @param minDIFF If the difference between the input FoldHitC and the calculated FoldHitC corresponding to a FoldHit0 value, then stop the calculation process and return this calculated value as what we want
#' @examples y1 = rnorm(12, 0, 1); y2 = rnorm(12, -3, 1)
#' FoldHit.homoVAR.UMVUE.fn(y1, y2)
#' FoldHit0.homoVAR.fn(y1, y2, Alpha=0.05, length.out=1000, minDIFF=0.001)
#' y1 = -y1; y2 = -y2
#' FoldHit.homoVAR.UMVUE.fn(y1, y2)
#' FoldHit0.homoVAR.fn(y1, y2, Alpha=0.05, length.out=1000, minDIFF=0.001)
#' @return FoldHit0
#'
#' @importFrom stats var
#'
#' @export
FoldHit0.homoVAR.fn = function(Y1, Y2, Alpha=0.05, length.out=1000, minDIFF=0.01 )
{
#*************************************************************************************
# function to search for FoldHit0 corresponding to the estimated value of FoldHit
# Author: Xiaohua Douglas Zhang 02/2020
# Augment
# Y1: a value or a vector for the first group (reference group)
# Y2: a vector for the second group
# Alpha: significant level
# length.out: the length of vectors of FoldHit0 candidate values for search FoldHit0.
# minDIFF: if the difference between the input FoldHitC and the calculated FoldHitC
# corresponding to a FoldHit0 value, then stop the calculation process and
# return this calculated value as what we want
# Example
# y1 = rnorm(12, 0, 1); y2 = rnorm(12, -3, 1)
# FoldHit.homoVAR.UMVUE.fn(y1, y2)
# FoldHit0.homoVAR.fn(y1, y2, Alpha=0.05, length.out=1000, minDIFF=0.001)
# y1 = -y1; y2 = -y2
# FoldHit.homoVAR.UMVUE.fn(y1, y2)
# FoldHit0.homoVAR.fn(y1, y2, Alpha=0.05, length.out=1000, minDIFF=0.001)
#*************************************************************************************
n1 = sum( !is.na(Y1) )
n2 = sum( !is.na(Y2) )
FoldHitC = FoldHit.homoVAR.UMVUE.fn(Y1, Y2)
FoldHit0 = FoldHit0core.homoVAR.fn(FoldHitC, n1, n2, Alpha, length.out, minDIFF)
return( FoldHit0 )
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.