Kernel Local Fisher Discriminant Analysis of Principal Components (KLFDAPC) for large genomic data

Install packages

Install the most recent version of the KLFDAPC package using devtools: `````r library("devtools")

devtools::install_github("xinghuq/KLFDAPC")

Alternatively, you can install from the source files, run the following commands in the shell:

```{shell}
R CMD build KLFDAPC
R CMD check --as-cran KLFDAPC_0.1.0.tar.gz
R CMD INSTALL KLFDAPC_0.1.0.tar.gz
```


### Dependencies

Before install or during installation, make sure the below dependences are installed.
``````r
requireNamespace("SNPRelate")

if (!requireNamespace("BiocManager", quietly=TRUE))

  install.packages("BiocManager",repos = "http://cran.us.r-project.org")

if (!requireNamespace("SNPRelate", quietly=TRUE))

  BiocManager::install("SNPRelate")

 if (!requireNamespace("DA", quietly=TRUE))

  devtools::install_github("xinghuq/DA")

Vignettes and tutorials

vignette("Population_structure_of_Covid")

vignette("Population_structure_of_RegMap")

vignette("Genome_scan_KLFDAPC")

Welcome any feedback and pull request.

Citation

Qin. X. 2020. KLFDAPC: Kernel local Fisher discriminant analysis of principal components (KLFDAPC) for large genomic data. R package version 0.2.0.https://xinghuq.github.io/KLFDAPC/

Qin, X., Chiang, C.W.K., and Gaggiotti, O.E. (2021). Kernel Local Fisher Discriminant Analysis of Principal Components (KLFDAPC) significantly improves the accuracy of predicting geographic origin of individuals. bioRxiv, 2021.2005.2015.444294.



xinghuq/KLFDAPC documentation built on June 12, 2022, 7:20 p.m.