README.md

Introduction

ADMM is an R package that utilizes the Alternating Direction Method of Multipliers (ADMM) algorithm to solve a broad range of statistical optimization problems. Presently the models that ADMM has implemented include Lasso, Elastic Net, Least Absolute Deviation and Basis Pursuit.

Installation

ADMM package is still experimental, so it has not been submitted to CRAN yet. To install ADMM, you need a C++ compiler such as g++ or clang++, and for Windows users, the Rtools software is needed (unless you can configure the toolchain by yourself).

The installation follows the typical way of R packages on Github:

library(devtools)
install_github("yixuan/ADMM")

In order to achieve high performance computation, the package uses single precision floating point type (aka float) in some part of the code, which uses single precision BLAS functions such as ssyrk(). However, the BLAS library shipped with R does not contain such functions, so for code portability, a macro called NO_FLOAT_BLAS is defined in src/Makevars to use fallback Eigen implementation.

If your R is linking to a high performance BLAS such as OpenBLAS, it is suggested to remove that macro in order to use the BLAS implementation. Moreover, the Eigen library that ADMM pakcage depends on benefits from modern CPU's vectorization support, so it is also recommended to define -msse4 or -mavx in the PKG_CXXFLAGS variable (in file src/Makevars) whenever applicable.

Models

Lasso

library(glmnet)
library(ADMM)
set.seed(123)
n <- 100
p <- 20
m <- 5
b <- matrix(c(runif(m), rep(0, p - m)))
x <- matrix(rnorm(n * p, mean = 1.2, sd = 2), n, p)
y <- 5 + x %*% b + rnorm(n)

fit <- glmnet(x, y)
out_glmnet <- coef(fit, s = exp(-2), exact = TRUE)
out_admm <- admm_lasso(x, y)$penalty(exp(-2))$fit()
out_paradmm <- admm_lasso(x, y)$penalty(exp(-2))$parallel()$fit()

data.frame(glmnet = as.numeric(out_glmnet),
           admm = as.numeric(out_admm$beta),
           paradmm = as.numeric(out_paradmm$beta))
##          glmnet         admm      paradmm
## 1   5.357410774  5.357455254  5.357429504
## 2   0.178916019  0.178915471  0.178917870
## 3   0.683606818  0.683609307  0.683610320
## 4   0.310518550  0.310507625  0.310525119
## 5   0.861034415  0.861029863  0.861012816
## 6   0.879797912  0.879794598  0.879801810
## 7   0.007854581  0.007850002  0.007853498
## 8   0.000000000  0.000000000  0.000000000
## 9   0.000000000  0.000000000  0.000000000
## 10  0.023462980  0.023467677  0.023452930
## 11  0.010952896  0.010957017  0.010950469
## 12  0.000000000  0.000000000  0.000000000
## 13 -0.003800159 -0.003811116 -0.003801103
## 14  0.000000000  0.000000000  0.000000000
## 15  0.094591923  0.094586611  0.094600648
## 16  0.000000000  0.000000000  0.000000000
## 17  0.000000000  0.000000000  0.000000000
## 18  0.000000000  0.000000000  0.000000000
## 19  0.000000000  0.000000000  0.000000000
## 20 -0.002916255 -0.002929136 -0.002919935
## 21  0.000000000  0.000000000  0.000000000

Elastic Net

fit <- glmnet(x, y, alpha = 0.5)
out_glmnet <- coef(fit, s = exp(-2), exact = TRUE)
out_admm <- admm_enet(x, y)$penalty(exp(-2), alpha = 0.5)$fit()
data.frame(glmnet = as.numeric(out_glmnet),
           admm = as.numeric(out_admm$beta))
##          glmnet         admm
## 1   5.150556538  5.150497437
## 2   0.204543779  0.204526767
## 3   0.705652674  0.705665767
## 4   0.330650192  0.330640256
## 5   0.872594728  0.872611761
## 6   0.884433876  0.884422064
## 7   0.048044107  0.048055928
## 8   0.025072878  0.025097074
## 9   0.000000000  0.000000000
## 10  0.057804317  0.057830613
## 11  0.041853068  0.041876025
## 12 -0.004476248 -0.004499977
## 13 -0.035255637 -0.035279647
## 14  0.000000000  0.000000000
## 15  0.110919341  0.110915266
## 16  0.000000000  0.000000000
## 17  0.000000000  0.000000000
## 18  0.000000000  0.000000000
## 19  0.000000000  0.000000000
## 20 -0.021003756 -0.020984368
## 21  0.000000000  0.000000000

Least Absolute Deviation

Least Absolute Deviation (LAD) minimizes ||y - Xb||_1 instead of ||y - Xb||_2^2 (OLS), and is equivalent to median regression.

library(quantreg)
out_rq <- rq.fit(x, y)
out_admm <- admm_lad(x, y, intercept = FALSE)$fit()

data.frame(rq_br = out_rq$coefficients,
           admm = out_admm$beta[-1])
##           rq_br          admm
## 1   0.463871497  0.4630289961
## 2   0.829243353  0.8324149339
## 3   0.151432833  0.1493799430
## 4   1.074107564  1.0707590072
## 5   0.958979798  0.9569585188
## 6   0.502539859  0.5028832829
## 7   0.337640338  0.3360263689
## 8   0.209127703  0.2120946512
## 9   0.361765382  0.3630356485
## 10  0.323168985  0.3217875563
## 11 -0.002009264  0.0007319653
## 12 -0.036099511 -0.0370447075
## 13  0.328007777  0.3290499302
## 14  0.296038071  0.2992857234
## 15  0.310187867  0.3117528782
## 16  0.071713681  0.0711670377
## 17  0.166827429  0.1622600454
## 18  0.260366502  0.2580854533
## 19  0.324487629  0.3251952295
## 20  0.209758565  0.2131039214

Basis Pursuit

set.seed(123)
n <- 50
p <- 100
nsig <- 15
beta_true <- c(runif(nsig), rep(0, p - nsig))
beta_true <- sample(beta_true)

x <- matrix(rnorm(n * p), n, p)
y <- drop(x %*% beta_true)
out_admm <- admm_bp(x, y)$fit()

range(beta_true - out_admm$beta)
## [1] -0.0006052779  0.0004780069

Performance

Lasso and Elastic Net

library(microbenchmark)
library(ADMM)
library(glmnet)
# compute the full solution path, n > p
set.seed(123)
n <- 10000
p <- 1000
m <- 100
b <- matrix(c(runif(m), rep(0, p - m)))
x <- matrix(rnorm(n * p, sd = 2), n, p)
y <- x %*% b + rnorm(n)

lambdas1 = glmnet(x, y)$lambda
lambdas2 = glmnet(x, y, alpha = 0.6)$lambda

microbenchmark(
    "glmnet[lasso]" = {res1 <- glmnet(x, y)},
    "admm[lasso]"   = {res2 <- admm_lasso(x, y)$penalty(lambdas1)$fit()},
    "padmm[lasso]"  = {res3 <- admm_lasso(x, y)$penalty(lambdas1)$parallel()$fit()},
    "glmnet[enet]"  = {res4 <- glmnet(x, y, alpha = 0.6)},
    "admm[enet]"    = {res5 <- admm_enet(x, y)$penalty(lambdas2, alpha = 0.6)$fit()},
    times = 5
)
## Unit: milliseconds
##           expr      min        lq      mean    median        uq       max neval
##  glmnet[lasso] 939.0194  943.7227 1005.1232 1043.2826 1048.1939 1051.3973     5
##    admm[lasso] 320.1375  320.7603  321.6413  321.0283  321.0635  325.2172     5
##   padmm[lasso] 486.7478  510.7104  529.9721  512.5421  567.0847  572.7757     5
##   glmnet[enet] 950.9513 1048.1872 1031.4437 1049.9402 1051.2483 1056.8917     5
##     admm[enet] 286.9177  288.8735  289.0231  288.9758  289.1651  291.1834     5
# difference of results
diffs = matrix(0, 3, 2)
rownames(diffs) = c("glmnet-admm [lasso]", "glmnet-padmm[lasso]", "glmnet-admm [enet]")
colnames(diffs) = c("min", "max")
diffs[1, ] = range(coef(res1) - res2$beta)
diffs[2, ] = range(coef(res1) - res3$beta)
diffs[3, ] = range(coef(res4) - res5$beta)
diffs
##                               min          max
## glmnet-admm [lasso] -0.0002873333 7.259293e-05
## glmnet-padmm[lasso] -0.0005554722 7.382258e-05
## glmnet-admm [enet]  -0.0002195360 8.176991e-05
# p > n
set.seed(123)
n <- 1000
p <- 2000
m <- 100
b <- matrix(c(runif(m), rep(0, p - m)))
x <- matrix(rnorm(n * p, sd = 2), n, p)
y <- x %*% b + rnorm(n)

lambdas1 = glmnet(x, y)$lambda
lambdas2 = glmnet(x, y, alpha = 0.6)$lambda

microbenchmark(
    "glmnet[lasso]" = {res1 <- glmnet(x, y)},
    "admm[lasso]"   = {res2 <- admm_lasso(x, y)$penalty(lambdas1)$fit()},
    "padmm[lasso]"  = {res3 <- admm_lasso(x, y)$penalty(lambdas1)$parallel()$fit()},
    "glmnet[enet]"  = {res4 <- glmnet(x, y, alpha = 0.6)},
    "admm[enet]"    = {res5 <- admm_enet(x, y)$penalty(lambdas2, alpha = 0.6)$fit()},
    times = 5
)
## Unit: milliseconds
##           expr       min        lq      mean    median        uq       max neval
##  glmnet[lasso]  197.9279  198.2767  199.1576  199.3774  200.0559  200.1499     5
##    admm[lasso]  230.6332  237.1298  245.8944  247.4240  250.6257  263.6596     5
##   padmm[lasso] 5159.2198 5170.7308 5513.3797 5345.6322 5426.8846 6464.4313     5
##   glmnet[enet]  195.7102  196.7432  197.3977  197.7577  198.3421  198.4355     5
##     admm[enet]  225.8397  239.6536  247.2756  249.9269  252.2080  268.7499     5
# difference of results
diffs[1, ] = range(coef(res1) - res2$beta)
diffs[2, ] = range(coef(res1) - res3$beta)
diffs[3, ] = range(coef(res4) - res5$beta)
diffs
##                              min         max
## glmnet-admm [lasso] -0.001518947 0.002055109
## glmnet-padmm[lasso] -0.001898237 0.002052009
## glmnet-admm [enet]  -0.001615556 0.001948477

LAD

library(ADMM)
library(quantreg)

set.seed(123)
n <- 1000
p <- 500
b <- runif(p)
x <- matrix(rnorm(n * p, sd = 2), n, p)
y <- x %*% b + rnorm(n)

microbenchmark(
    "quantreg[br]" = {res1 <- rq.fit(x, y)},
    "quantreg[fn]" = {res2 <- rq.fit(x, y, method = "fn")},
    "admm"         = {res3 <- admm_lad(x, y, intercept = FALSE)$fit()},
    times = 5
)
## Unit: milliseconds
##          expr        min         lq       mean     median         uq
##  quantreg[br] 2420.34862 2422.79215 2493.76695 2426.54150 2429.49592
##  quantreg[fn]  451.87866  452.94572  454.71406  453.56378  455.81717
##          admm   50.55354   51.17922   51.69386   51.59099   52.32357
##         max neval
##  2769.65653     5
##   459.36498     5
##    52.82196     5
# difference of results
range(res1$coefficients - res3$beta[-1])
## [1] -0.006989109  0.006061505
set.seed(123)
n <- 5000
p <- 1000
b <- runif(p)
x <- matrix(rnorm(n * p, sd = 2), n, p)
y <- x %*% b + rnorm(n)

microbenchmark(
    "quantreg[fn]" = {res1 <- rq.fit(x, y, method = "fn")},
    "admm"         = {res2 <- admm_lad(x, y, intercept = FALSE)$fit()},
    times = 5
)
## Unit: seconds
##          expr      min       lq     mean   median       uq      max neval
##  quantreg[fn] 6.156911 6.231430 7.686811 6.280464 9.861437 9.903813     5
##          admm 2.184311 2.187431 2.193200 2.189173 2.202042 2.203044     5
# difference of results
range(res1$coefficients - res2$beta[-1])
## [1] -0.003577610  0.004135838

Basis Pursuit

set.seed(123)
n <- 1000
p <- 2000
nsig <- 100
beta_true <- c(runif(nsig), rep(0, p - nsig))
beta_true <- sample(beta_true)
x <- matrix(rnorm(n * p), n, p)
y <- drop(x %*% beta_true)

system.time(out_admm <- admm_bp(x, y)$fit())
##    user  system elapsed
##   0.996   0.169   0.292
range(beta_true - out_admm$beta)
## [1] -0.001267782  0.002108828
set.seed(123)
n <- 1000
p <- 10000
nsig <- 200
beta_true <- c(runif(nsig), rep(0, p - nsig))
beta_true <- sample(beta_true)
x <- matrix(rnorm(n * p), n, p)
y <- drop(x %*% beta_true)

system.time(out_admm <- admm_bp(x, y)$fit())
##    user  system elapsed
##  19.315   0.573   4.969
range(beta_true - out_admm$beta)
## [1] -0.1575968  0.3361001


yixuan/ADMM documentation built on May 4, 2019, 5:28 p.m.