README.md

Bionexr: an R package for integrative network-based analysis of gene somatic mutation and gene expression data to identify cancer drivers

Cancer genome projects have generated massive genome and transcriptome sequencing data, which makes tumor-specific alterations such as somatic mutation and gene expression information easily available. To distinguish cancer drivers from passengers, we implement an R package “Bionexr” for integrative network-based analysis of gene somatic mutation and expression data. Bionexr provides these features:

Bionexr is consisted of four main modules:

Installation

Hardware requirements

Important: Read First

Software requirements

How to install

First, please install "DESeq2" package from BioConductor. To install "DESeq2", start R and enter:

source("https://bioconductor.org/biocLite.R")
biocLite("DESeq2")

Second, please install "devtools" package (see devtools github for more information). To install devtools from CRAN, please run:

install.packages("devtools")

Finnaly, follow the instructions below to download latest version of Bionexr:

devtools::install_github("ys-amms/bionexr", build_vignettes = TRUE)

Users can browse the vignette by running browseVignettes("bionexr")

Quick Start

Usage

Download cancer genome data using "Data Download" module

firehose_get is the main command to download cancer genome data from firehose. Here we use firehose_get to download HNSC data.

mut_data <- firehose_get("HNSC", "mutation", run_date = "2015_08_21", run_type = "stddata")
mut_data <- mut_data[[1]]
mut_sample_ids <- unique(mut_data[[7]])
exp_data <- firehose_get("HNSC", "expression", run_date = "2015_08_21", run_type = "stddata")
exp_data <- exp_data[[1]]
exp_sample_ids <- colnames(exp_data)

common_case <- intersect(mut_sample_ids, exp_sample_ids)
exp_control <- grepl("-11$", exp_sample_ids)

hnsc_mut <- mut_data[mut_data[[7]] %in% common_case, ]
hnsc_exp <- exp_data[, (exp_sample_ids %in% common_case) | exp_control]

Using "Gene Analysis" module

perform_gene_ppi and perform_gene_pathway are the two main commands for performing "Gene Analysis". As you can guess from the function name, perform_gene_ppi is for PPIN-based approach and perform_gene_pathway is for pathway-based approach.

See the instructions below, note that hnsc_mut and hnsc_exp are from "Data Download" module:

Note that before performing "Gene Analysis", run command prepare_ma() first. This module would take a few time to finish, drink some coffee happily.

Using "Network Analysis" module

perform_network_ppi and perform_network_pathway are the two main commands for performing "Network Analysis". As the same to "Gene Analysis" module, perform_network_ppi is for PPIN-based approach and perform_network_pathway is for pathway-based approach.

See the instructions below, note that hnsc_exp is from "Data Download" module, and ppi.gene and pathway.gene are from "Gene Analysis" module:

Using "Visualization" module

plot_ppi and plot_pathway are the two main commands for performing "Visualization" module.plot_ppi is for PPIN-based approach's result and plot_pathway is for pathway-based approach's result.

See the instructions below, note that ppi.network and pathway.network are from "Network Analysis" module:

Using "Gene Analysis" and "Network Analysis" in one command

The commands perform_main_ppi and perform_main_pathway can perform "Gene Analysis" and "Network Analysis", and the result can be visualized straightforward.

The example instructions are written below, note that hnsc_mut and hnsc_exp are from "Data Download" module:

Contact

Please send email to yannis.pku@gmail.com if you have any questions.



ys-amms/bionexr documentation built on May 4, 2019, 5:33 p.m.