
Single-cell ATAC-seq Signal Extraction and
Enhancement with SCATE

Zhicheng Ji

Johns Hopkins University,
Baltimore, Maryland, USA

zji4@jhu.edu

Weiqiang Zhou

Johns Hopkins University,
Baltimore, Maryland, USA

wzhou14@jhu.edu

Hongkai Ji

Johns Hopkins University,
Baltimore, Maryland, USA

hji@jhsph.edu

March 28, 2020

Contents

1 Introductions 2

2 Data preparation 2

3 Read in and Preprocessing Data 3

4 Cell Clustering (Optional) 4

5 Run SCATE 6

6 Peak Calling 8

7 Wrapper function 9

8 Add new bulk samples or CRE to human and mouse databases
(BDDB + User data) 10

9 Build database from scratch (User data) 10

10 Use database build by users in SCATE 11

11 Session Info 11

1

1 Introductions

Single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq)
is a new technology for measuring genome-wide regulatory element activities
in single cells. With the ability to analyze cells’ distinct behaviors in a het-
erogeneous cell population, this technology is rapidly transforming biomedical
research. Data produced by scATAC-seq are highly sparse and discrete. Ex-
isting computational methods typically use these data to analyze regulatory
pathway activities in single cells. They cannot accurately measure activities of
individual cis-regulatory elements (CREs) due to data sparsity. SCATE is a new
statistical framework for analyzing scATAC-seq data. SCATE adaptively inte-
grates information from co-activated CREs, similar cells, and publicly available
regulome data to substantially increase the accuracy for estimating activities of
individual CREs. We show that one can use SCATE to identify cell subpopu-
lations and then accurately reconstruct CRE activities of each subpopulation.
The reconstructed signals are accurate even for cell subpopulations consisting of
only a few cells, and they significantly improve prediction of transcription factor
binding sites. The accurate CRE-level signal reconstruction makes SCATE an
unique tool for analyzing regulatory landscape of a heterogeneous cell popula-
tion using scATAC-seq data.
The main functions of SCATE is demonstrated using the following example of
10 GM12878 and 10 K562 scATAC-seq samples.

2 Data preparation

The first input of SCATE is a list of aligned bam files for scATAC-seq sample.
Each single cell should have one separate bam file. One needs to compile a list
that includes the location to each bam file. The easist way is to put all bam files
in one folder and use list.files function to get all locations. Below shows an
example where bamlist stores the locations to bam files. Alternately users can
also use a list of GRanges object as input to SCATE. See section below.

load in SCATE

options(warn=-1)

suppressMessages(library(SCATE))

set.seed(12345)

set up locations to bam files

bamlist <- list.files(paste0(system.file(package="SCATE"),"/extdata/example"),full.names = T)

head(bamlist)

[1] "/private/var/folders/xw/5kkj4jvn6y77n1kwtt691w740000gn/T/RtmpR1qaE1/Rinstdc381255f3d0/SCATE/extdata/example/GSM1596831.bam"

[2] "/private/var/folders/xw/5kkj4jvn6y77n1kwtt691w740000gn/T/RtmpR1qaE1/Rinstdc381255f3d0/SCATE/extdata/example/GSM1596840.bam"

[3] "/private/var/folders/xw/5kkj4jvn6y77n1kwtt691w740000gn/T/RtmpR1qaE1/Rinstdc381255f3d0/SCATE/extdata/example/GSM1596874.bam"

[4] "/private/var/folders/xw/5kkj4jvn6y77n1kwtt691w740000gn/T/RtmpR1qaE1/Rinstdc381255f3d0/SCATE/extdata/example/GSM1596881.bam"

[5] "/private/var/folders/xw/5kkj4jvn6y77n1kwtt691w740000gn/T/RtmpR1qaE1/Rinstdc381255f3d0/SCATE/extdata/example/GSM1596940.bam"

[6] "/private/var/folders/xw/5kkj4jvn6y77n1kwtt691w740000gn/T/RtmpR1qaE1/Rinstdc381255f3d0/SCATE/extdata/example/GSM1596942.bam"

2

SCATE comes with a built in function to perform cell clustering. Users can also
prepare their own clustering results. See Section Cell Clustering.
Users can also rebuild the SCATE database with their own bulk DNase-seq or
list of CRE of interest. See Section Build user’s own database.
SCATE also supports peak calls instead of bam files as input data format. In
this case, the input should be a data frame or list of data frames of scATAC-seq
peaks. For each data frame, first column is chromsome name, second column is
start site, third column is end site, and fourth column is the number of reads
of the peak. Currently cellcluster and SCATE supports peak calls as input.
Please refer to the manual page of cellcluster and SCATE functions for details.

3 Read in and Preprocessing Data

The function satacprocess reads bam files into R as a list of GRanges object.
It transforms the reads into the midpoint of the reads (e.g. read chr1:100-150
will be transformed into chr1:125-125). scATAC-seq samples with library size
smaller than libsizefilter (here is 1000) will be discarded.
Here we run satacprocess function using the bamlist we prepared in the
previous section. The returned satac object is a list of Granges with length 18
(2 of the 20 cells are filtered out) and will be used in following analysis.

satac <- satacprocess(input=bamlist,type='bam',libsizefilter=1000)

Number of elements in satac

length(satac)

[1] 18

Content in the first element as an example

satac[[1]]

GRanges object with 10847 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 569926 +

[2] chr1 569924 +

[3] chr1 569926 +

[4] chr1 569904 -

[5] chr1 569910 -

...

[10843] chrX 153763244 -

[10844] chrX 153775451 +

[10845] chrX 153977428 +

[10846] chrX 154285712 +

[10847] chrX 154842414 +

seqinfo: 24 sequences from an unspecified genome

3

Users can also use a list of GRanges object as input to SCATE by specifying
type=’gr’.
For the purpose of demonstration, we shorten the names of satac.

names(satac) <- sub('.*/','',names(satac))

4 Cell Clustering (Optional)

SCATE has a built-in function cellcluster that clusters cells based on aver-
aged signal of CRE clusters. The below example runs the cellcluster function
using the satac object we generated in previous sections.

clusterres <- cellcluster(satac,genome="hg19",clunum=2,perplexity=5)

Here genome should be either ”hg19” or ”mm10”. It indicates the genome to
which the scATAC-seq data is aligned. clunum gives the number of clusters.
If clunum=NULL, the cluster number will be determined automatically by the
function. perplexity is a number specifying perplexity for tSNE. The default
is 30. It should be reduced when sample size is small. For example here it is
reduced to 5.
The output of the function cluster has three components: tSNE results, clus-
tering results and aggregated signal for CRE cluster:

tSNE results

tsne <- clusterres[[1]]

head(tsne)

[,1] [,2]

GSM1596840.bam 1.6190782 0.4044729

GSM1596874.bam 2.3337455 -2.9356294

GSM1596881.bam 3.5145605 0.5138395

GSM1596942.bam 3.2520900 -1.2296946

GSM1596944.bam 0.9427077 -0.7766757

GSM1596961.bam 1.7692160 -0.5845746

clustering results

cluster <- clusterres[[2]]

cluster

GSM1596840.bam GSM1596874.bam GSM1596881.bam GSM1596942.bam GSM1596944.bam

1 1 1 1 1

GSM1596961.bam GSM1597041.bam GSM1597096.bam SRR1779746.bam SRR1779805.bam

1 1 1 2 2

SRR1779856.bam SRR1779874.bam SRR1779956.bam SRR1779959.bam SRR1779973.bam

1 2 2 1 2

4

SRR1780018.bam SRR1780020.bam SRR1780054.bam

1 2 2

cell 'GSM1596840.bam' belongs to cluster 1, and cell 'SRR1779746.bam' belongs to cluster 2.

aggregated signal for CRE cluster

aggsig <- clusterres[[3]]

aggsig[1:3,1:3]

GSM1596840.bam GSM1596874.bam GSM1596881.bam

7 0.0000000 0.0000000 0.3607243

9 0.0000000 0.0000000 0.0000000

10 0.6758744 0.8080204 0.4568552

We can use the following code to draw the tSNE plot and mark the clusters.

library(ggplot2)

plotdata <- data.frame(tSNE1=tsne[,1],tSNE2=tsne[,2],Cluster=as.factor(cluster))

ggplot(plotdata,aes(x=tSNE1,y=tSNE2,col=Cluster)) + geom_point()

5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2

0

2

−4 −2 0 2
tSNE1

tS
N

E
2 Cluster

●

●

1

2

5 Run SCATE

The function SCATE will reconstruct signals for individual CREs. For example,
below code performs SCATE using the scATAC-seq data and clustering results
from the previous clustering step. For demonstration purpose, here number of
CRE clusters is set to be 5000 (clunum=5000) to allow faster speed. In real ap-
plication, clunum is recommended to set to NULL so SCATE will automatically
choose the optimal number of clusters.

res <- SCATE(satac,genome="hg19",cluster=cluster,clusterid=NULL,clunum=5000,ncores=10,verbose=TRUE)

[1] "Preparing data"

[1] "Fitting model"

[1] "Preparing data"

[1] "Fitting model"

[1] "Generating results"

6

check the 10000-10005th row of the matrix

res[10000:10005,]

1 2

chr1_2009200_2009399 1.6157410 1.676166

chr1_2009400_2009599 1.4959366 1.541986

chr1_2009600_2009799 1.8051788 1.886171

chr1_2009800_2009999 1.9564854 2.018323

chr1_2010000_2010199 1.7938793 1.819427

chr1_2010200_2010399 0.7672063 0.805896

If users only want to perform SCATE in a subset of clusters, they can set
clusterid to be a subset of clusters. For example setting clusterid=c(1,2)

will let SCATE to only run in cluster 1 and 2. ncores sets the number of
computing cores to run SCATE in parallel. A larger number will result in less
computational time, but will use more computational resources. If SCATE is
run on a personal computer, ncores should be set to a small number such as
3. If ncores=NULL, all available cores will be used for computing. Note that
currently ncores are forced to be 1 on Windows computers. If verbose is TRUE,
the current progress will be displayed. If verbose is FALSE the information will
be suppressed.
The output is matrix of reconstructed signals. The number of rows of the matrix
is the same as the number of bins in the genome. The number of columns is
the same as the number of clusters in which SCATE is performed. The column
names indicate the cluster id.
Users can also supply their own cell cluster. An example can be seen below.
usercellcluster specifies the cluster by users. Note that usercellcluster

needs to be named to correspond with the list of GRanges.

use similar ways to construct the cluster

usercellcluster <- rep(1:2,each=9)

names(usercellcluster) <- names(satac)

check the contents of the cluster

usercellcluster

GSM1596840.bam GSM1596874.bam GSM1596881.bam GSM1596942.bam GSM1596944.bam

1 1 1 1 1

GSM1596961.bam GSM1597041.bam GSM1597096.bam SRR1779746.bam SRR1779805.bam

1 1 1 1 2

SRR1779856.bam SRR1779874.bam SRR1779956.bam SRR1779959.bam SRR1779973.bam

2 2 2 2 2

SRR1780018.bam SRR1780020.bam SRR1780054.bam

2 2 2

7

userclusterres <- SCATE(satac,genome="hg19",cluster=usercellcluster,clunum=5000,ncores=10,verbose=TRUE)

Function extractfeature can be used to extract signals for a subset of genomic
region of interest. For example if we want to extract signal for all bins that are
within chromosome 5 50000-50300 and 50700-51000, we can first prepare the
following region data:

region <- data.frame(chr=c('chr5','chr5'),start=c(50000,50700),end=c(50300,51000))

region

chr start end

1 chr5 50000 50300

2 chr5 50700 51000

Region is a data frame with three columns. First column is chromosome name,
second column is starting position, and third column is the ending position.
Function extractfeature is then called in this way. mode can be either ’overlap’
to include all bins that overlap with the given region, or be ’nearest’ to include
the nearest bin for each region.

extractres <- extractfeature(res,region,mode='overlap')

extractres

1 2

chr5_50000_50199 1.211534 1.220932

chr5_50200_50399 1.363037 1.439014

chr5_50600_50799 1.399362 1.492725

chr5_50800_50999 1.425771 1.623218

chr5_51000_51199 1.270912 1.483376

extractfeature also allows the extracted features to be saved to BED files that
can be uploaded to genome browser (e.g. UCSC genome browser):

extractres <- extractfeature(res,region,mode='overlap',folder='destination folder')

In this example, a set of BED files will be saved to destination folder. Each
BED file corresponds to a cluster and has the signal and genomic location for
each bin. The name of the BED file corresponds to the name of the cluster.

6 Peak Calling

The function peakcall will perform peak calling on the SCATE results. For
example, we can call peaks for the first cluster:

8

peakres <- peakcall(res)

check the result for the first cluster

head(peakres[[1]])

chr start end FDR Signal

8906 chr20 26188600 26190799 0 7.823961

5854 chr11 62607800 62609999 0 7.643640

6411 chr12 53772800 53774799 0 7.288096

9623 chr19 42772000 42773799 0 7.245268

9559 chr19 39339600 39341799 0 7.241847

9852 chr19 55850000 55851599 0 7.237216

For each cluster, the output is a data frame with five column. The first three
columns tell the location of the peak. They are chromosome name, starting
location and ending location respectively. The fourth column is the FDR of the
peak, and the fifth column is the signal of the peak. Peaks are already ordered
by FDR and then by signal.
Use the following code to save the peak results for the first cluster as BED file.

write.table(peakres[[1]],file='your file.bed',sep='\t',quote=F,col.names = F,row.names = F)

7 Wrapper function

The whole process of reading in bam, clustering cell, and performing SCATE
is included in the SCATEpipeline function using following wrapper function of
SCATE pipeline:

piperes <- SCATEpipeline(bamlist,genome="hg19",cellclunum=2,CREclunum=5000,perplexity=5,ncores=10)

get the cell cluster results, same as calling 'cellcluster' function.

cluster <- piperes[['cellcluster']]

get the SCATE outputs, same as calling 'SCATE' function.

SCATEres <- piperes[['SCATE']]

get the peak calling results, same as calling 'peakcall' function.

peakres <- piperes[['peak']]

As before, bamlist stores the locations to bam files and genome is ’hg19’ or
’mm10’. The output is a list with three components. The first component is the
cell clustering results, same as the one returned by cellcluster. The second
component is the SCATE results, same as the one returned by SCATE. The third
component is the peak calling results, same as the one returned by peakcall.
One can extract the region using the extractfeature

9

extractres <- extractfeature(piperes[['SCATE']],region,mode='overlap',folder='destination folder')

8 Add new bulk samples or CRE to human and
mouse databases (BDDB + User data)

Users can add new bulk samples or CRE to human and mouse databases. This
can be done with the following command. Note: the function may take around
1-2 days to finish.

makedatabase(datapath,savepath,bamfile=bamfile,cre=cre,genome='hg19')

Here, datapath is the path to the data package folder (e.g. myfolder/hg19/).
User must first download the data package to use this function. The data pack-
age for hg19 and mm10 can be downloaded from http://jilab.biostat.jhsph.edu/projects/scate/hg19.zip
or http://jilab.biostat.jhsph.edu/projects/scate/mm10.zip. The compressed file
should be unzipped.
savepath is the path to save the generated database. e.g. myfolder/database.rds.
bamfile is the location of bulk DNase-seq bamfiles. The format is the same as
bamlist

cre is a dataframe of new CRE sites to be added to the database. First column:
chromosome name. Second column: start position. Third column: end position.
The format is the same as region argument in function extractfeature.
genome should be either ’hg19’ or ’mm10’. Default is ’hg19’.
The function will generate a database file in ’savepath’, which can then be passed
to SCATE main function. See the manual page of SCATE function for how to
include user’s own database.

9 Build database from scratch (User data)

Users can also build database from scratch using bulk samples or pooled single-
cell ATAC-seq samples (pseudobulks) provided by users. This can be done with
the following command:

makedatabase(datapath=NULL,savepath,bamfile=bamfile,cre=cre,genomerange=genomerange)

savepath is the path to save the generated database. e.g. myfolder/database.rds.
bamfile is the location of bulk DNase-seq bamfiles or pooled single-cell ATAC-
seq bam files. The format is the same as bamlist

cre is a dataframe of new CRE sites to be added to the database. First column:
chromosome name. Second column: start position. Third column: end position.
The format is the same as region argument in function extractfeature.
genomerange is a data frame with two columns. First column is the chromosome
and second column is the length of the genome. Example is https://genome.ucsc.edu/goldenpath/help/hg19.chrom.sizes

10

The function will generate a database file in ’savepath’, which can then be passed
to SCATE main function. See the manual page of SCATE function for how to
include user’s own database. The function will take around 1-2 days to finish.

10 Use database build by users in SCATE

Once the databases are built, users can run the whole pipeline with the new
database:

piperes <- SCATEpipeline(bamlist,datapath='path to new database')

The following code gives example of running each individual step with the new
database. Note that the new database only needs to be specified in cellcluster

and SCATE.

clusterres <- cellcluster(satac,datapath='path to new database',clunum=2,perplexity=5)

cluster <- clusterres[[2]]

res <- SCATE(satac,datapath='path to new database',cluster=cluster,clusterid=NULL)

11 Session Info

sessionInfo()

11

