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Abstract

This vignette tests the Markov chain Monte Carlo (MCMC) implementation of Rpackage
FME (Soetaert and Petzoldt 2010).
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1. Introduction
Function modMCMC from package FME (Soetaert and Petzoldt 2010) implements a Markov
chain Monte Carlo (MCMC) algorithm using a delayed rejection and adaptive Metropolis
procedure (Haario et al. 2006).
In this vignette , the DRAM MCMC function is tested on several functions.

• Sampling from a normal distribution, using different priors

• Sampling from a log-normal distribution

• Sampling from a curvilinear ("banana") function (Laine 2008)

• A simple chemical model, fitted to a data series (Haario et al. 2006)

• A nonlinear monod function, fitted to a data series.

Other examples of FME functions (including modMCMC) are in the following vignettes:

• "FMEdyna", FMEs functions applied to a dynamic ordinary differential equation model

• "FMEsteady", applied to a steady-state solution of a partial differential equation
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2. Function modMCMC

2.1. The Markov chain Monte Carlo method

The implemented MCMC method is designed to be applied to nonlinear models, and taking
into account both the uncertainty in the model parameters and in the model output.
Consider observations y and a model f, that depend on parameters θ and independent variables
x. Assuming additive, independent Gaussian errors with an unknown variance σ2:

y = f(x, θ) + ξ

where
ξ ∼ N(0, Iσ2)

For simplicity we assume that the prior distribution for θ is Gaussian:

θi ∼ N(vi, µi)

while for the reciprocal of the error variance 1/σ2, a Gamma distribution is used as a prior:

p(σ−2) ∼ Γ
(

n0
2 ,

n0
2 S2

0

)
.

The posterior for the parameters will be estimated as:

p(θ|y, σ2) ∝ exp
(

−0.5
(

SS(θ)
σ2 + SSpri(θ)

))
and where σ2 is the error variance, SS is the sum of squares function

SS(θ) =
∑

(yi − f(θ)i)2

and
SSpri(θ) =

∑
i

(
θi − vi

µi

)2
.

In the above, the sum of squares functions (SS(θ)) are defined for Gaussian likelihoods. For
a general likelihood function the sum-of-squares corresponds to twice the log likelihood,

SS(θ) = −2 log(p(y|θ))

. This is how the function value (f, see below) should be specified.
Similarly, to obtain a general non-Gaussian prior for the parameters θ (i.e. SSpri(θ)) minus
twice the log of the prior density needs to be calculated.
If non-informative priors are used, then SSpri(θ)=0.

2.2. Arguments to function modMCMC

The default input to modMCMC is:
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modMCMC(f, p, ..., jump=NULL, lower=-Inf, upper=+Inf, prior=NULL,
var0 = NULL, wvar0 = NULL, n0= NULL, niter=1000, outputlength = niter,
burninlength=0, updatecov=niter, covscale = 2.4^2/length(p),
ntrydr=1, drscale=NULL, verbose=TRUE)

with the following arguments (see help page for more information):

• f, the sum-of-squares function to be evaluated, SS(θ)

• p, the initial values of the parameters θ to be sampled

• ..., additional arguments passed to function f

• jump, the proposal distribution (this generates new parameter values)

• prior, the parameter prior, SSpri(θ)

• var0, wvar0, n0, the initial model variance and weight of the initial model variance,
where n0=wvar0*n, n=number of observations.

• lower,upper, lower and upper bounds of the parameters

• niter, outputlength, burninlength, the total number of iterations, the numer of
iterations kept in output, and the number of initial iterations removed from the output.

• updatecov, covscale, arguments for the adaptation of the proposal covariance matrix
(AM-part of the algorithm).

• ntrydr, drscale, delayed rejection (DR) arguments.
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3. Sampling from a normal distribution
In the first example, function modMCMC is used to sample from a normal distribution, with
mean = 10 and standard deviation = 1. We use this simple example mainly for testing the
algorithm, and to show various ways of defining parameter priors.
In this example, the error variance of the model is 0 (the default).
We write a function, Nfun that takes as input the parameter value and that returns 2 times
the log of the normal likelihood.

> mu <- 10
> std <- 1
> Nfun <- function(p)
+ -2*log(dnorm(p, mean = mu, sd = std))

The proposal covariance is assumed to be 5.

3.1. Noninformative prior

In the first run, a noninformative prior parameter distribution is used. 2000 iterations are
produced; the initial parameter value is taken as 9.5.

> MCMC <- modMCMC (f = Nfun, p = 9.5, niter = 2000, jump = 5)

number of accepted runs: 466 out of 2000 (23.3%)

It is more efficient to update the proposal distribution, e.g. every 10 iterations:

> MCMC <- modMCMC (f = Nfun, p = 9.5, niter = 2000, jump = 5, updatecov = 10)

number of accepted runs: 1396 out of 2000 (69.8%)

> summary(MCMC)

p1
mean 10.070124
sd 1.007911
min 7.518412
max 13.196895
q025 9.351091
q050 10.034233
q075 10.760927

3.2. Noninformative prior, lower bound imposed

In the second run, the sampled parameters are restricted to be > 9 (lower=9):
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> MCMC2 <- modMCMC (f = Nfun, p = 9.5, lower = 9, niter = 2000, jump = 5,
+ updatecov = 10)

number of accepted runs: 1430 out of 2000 (71.5%)

> summary(MCMC2)

p1
mean 10.2756619
sd 0.8004843
min 9.0010938
max 12.9663015
q025 9.6333582
q050 10.1917549
q075 10.7735331

3.3. A normally distributed prior

Finally, it is assumed that the prior for the model parameter is itself a normal distribution,
with mean 8 and standard devation 1: pri(θ) ∼ N(8, 1).
The posterior for this problem is a normal distribution with mean = 9, standard deviation of
0.707.

> pri <- function(p) -2*log(dnorm(p, 8, 1))
> MCMC3 <- modMCMC (f = Nfun, p = 9.5, niter = 2000, jump = 5,
+ updatecov = 10, prior = pri)

number of accepted runs: 1399 out of 2000 (69.95%)

> summary(MCMC3)

p1
mean 9.0055525
sd 0.6934714
min 6.4201943
max 11.4132288
q025 8.5756074
q050 9.0358937
q075 9.4460343

The number of accepted runs is increased by toggling on delayed rejection; at most 2 delayed
rejections steps are tried (ntrydr=2):

> summary(MCMC4 <- modMCMC(f = Nfun, p = 1, niter = 2000, jump = 5,
+ updatecov = 10, prior = pri, ntrydr = 2))
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number of accepted runs: 1927 out of 2000 (96.35%)
p1

mean 8.9962693
sd 0.6986521
min 4.7873685
max 11.2930606
q025 8.5359626
q050 8.9857000
q075 9.4311402

> MCMC4$count

dr_steps Alfasteps num_accepted num_covupdate
627 1881 1927 181

Finally, we plot a histogram of the three MCMC runs, and end by plotting the trace of the
last run (figure 1).

> par(mfrow = c(2,2))
> hist(MCMC$pars, xlab="x", freq = FALSE, main = "unconstrained", xlim = c(6, 14))
> hist(MCMC2$pars, xlab="x", freq = FALSE, main = "x>9", xlim = c(6, 14))
> hist(MCMC3$pars, xlab="x", freq = FALSE, main = "pri(x)~N(8,1)", xlim = c(6, 14))
> plot(MCMC3, mfrow = NULL, main = "AM")
> mtext(outer = TRUE, line = -1.5, "N(10,1)", cex = 1.25)
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Figure 1: Simulated draws of a normal distribution (N(10,1)) with different prior parameter
distributions - see text for R-code
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4. Sampling from a lognormal distribution
In the second example, function modMCMC is used to sample from a 3-variate log-normal dis-
tribution, with mean = 1,2,3, and standard deviation = 0.1.
We write a function that has as input the parameter values (a 3-valued vector) and that
returns 2 times the lognormal likelihood.

> mu <- 1:4
> std <- 1
> NL <- function(p) {
+ -2*sum(log(dlnorm(p, mean = mu, sd = std)))
+ }

The proposal covariance is assumed to be the identity matrix with a variance of 5. The simu-
lated chain is of length 10000 (niter), but only 1000 are kept in the output (outputlength).

> MCMCl <- modMCMC (f = NL, p = rep(1, 4), niter = 10000,
+ outputlength = 1000, jump = 5)

number of accepted runs: 3519 out of 10000 (35.19%)

Convergence is tested by plotting the trace; in the first run convergence is not good (figure 2)

> plot(MCMCl)

The number of accepted runs is increased by updating the jump covariance matrix every 100
runs and toggling on delayed rejection.

> MCMCl <- modMCMC (f = NL, p = rep(1, 4), niter = 5000,
+ outputlength = 1000, jump = 5, updatecov = 100, ntrydr = 2)

number of accepted runs: 2889 out of 5000 (57.78%)

Convergence of the chain is checked (figure 3).

> plot(MCMCl)

The histograms show the posterior densities (figure 4).

> hist(MCMCl)

> MCMCl$pars <- log(MCMCl$pars)
> summary(MCMCl)

p1 p2 p3 p4
mean 0.9431005 1.9532548 3.2036788 4.0976091
sd 0.9170056 0.9699925 1.0623289 1.0238266
min -2.0315258 -1.3889940 -0.3464631 0.2111235
max 3.3563106 4.1178055 5.7962178 6.7109035
q025 0.3058258 1.3379801 2.4872130 3.3954041
q050 0.9331448 1.9814548 3.1746040 4.1432607
q075 1.5805549 2.6419000 3.9442604 4.8022651
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Figure 2: The trace of the log normal distribution -Metropolis algorithm - see text for R-code
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Figure 3: The trace of the log normal distribution - adaptive Metropolis - see text for R-code
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Figure 4: The histograms of the log normal distributed samples - see text for R-code
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5. The banana

5.1. The model

This example is from Laine (2008).
A banana-shaped function is created by distorting a two-dimensional Gaussian distribution,
with mean = 0 and a covariance matrix τ with unity variances and covariance of 0.9:

τ =
[

1 0.9
0.9 1

]
.

The distortion is along the second-axis only and given by:

y1 = x1

y2 = x2 − (x2
1 + 1).

5.2. R-implementation

First the banana function is defined.

> Banana <- function (x1, x2) {
+ return(x2 - (x1^2+1))
+ }

We need a function that estimates the probability of a multinormally distributed vector

> pmultinorm <- function(vec, mean, Cov) {
+ diff <- vec - mean
+ ex <- -0.5*t(diff) %*% solve(Cov) %*% diff
+ rdet <- sqrt(det(Cov))
+ power <- -length(diff)*0.5
+ return((2.*pi)^power / rdet * exp(ex))
+ }

The target function returns -2 *log (probability) of the value

> BananaSS <- function (p)
+ {
+ P <- c(p[1], Banana(p[1], p[2]))
+ Cov <- matrix(nr = 2, data = c(1, 0.9, 0.9, 1))
+ -2*sum(log(pmultinorm(P, mean = 0, Cov = Cov)))
+ }

The initial proposal covariance (jump) is the identity matrix with a variance of 5. The
simulated chain is of length 2000 (niter). The modMCMC function prints the % of accepted
runs. More information is in item count of its return element.
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5.3. Metropolis Hastings algorithm

The First Markov chain is generated with the simple Metropolis Hastings (MH) algorithm

> MCMC <- modMCMC(f = BananaSS, p = c(0, 0.5), jump = diag(nrow = 2, x = 5),
+ niter = 2000)

number of accepted runs: 196 out of 2000 (9.8%)

> MCMC$count

dr_steps Alfasteps num_accepted num_covupdate
0 0 196 0

5.4. Adaptive Metropolis algorithm

Next we use the adaptive Metropolis (AM) algorithm and update the proposal every 100 runs
(updatecov)

> MCMC2 <- modMCMC(f = BananaSS, p = c(0, 0.5), jump = diag(nrow = 2, x = 5),
+ updatecov = 100, niter = 2000)

number of accepted runs: 369 out of 2000 (18.45%)

> MCMC2$count

dr_steps Alfasteps num_accepted num_covupdate
0 0 369 19

5.5. Delayed Rejection algorithm

Then the Metropolis algorithm with delayed rejection (DR) is applied; upon rejection one next
parameter cadidate is tried (ntrydr). (note ntrydr=1 means no delayed rejection steps).

> MCMC3 <- modMCMC(f = BananaSS, p = c(0, 0.5), jump = diag(nrow = 2, x = 5),
+ ntrydr = 2, niter = 2000)

number of accepted runs: 1054 out of 2000 (52.7%)

> MCMC3$count

dr_steps Alfasteps num_accepted num_covupdate
1799 5397 1054 0
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dr_steps denotes the number of delayed rejection steps; Alfasteps is the number of times
the algorithm has entered the acceptance function for delayed rejection.

5.6. Delayed Rejection Adaptive Metropolis algorithm

Finally the adaptive Metropolis with delayed rejection (DRAM) is used. (Here we also esti-
mate the elapsed CPU time, in seconds - print(system.time()) does this)

> print(system.time(
+ MCMC4 <- modMCMC(f = BananaSS, p = c(0, 0.5), jump = diag(nrow = 2, x = 5),
+ updatecov = 100, ntrydr = 2, niter = 2000)
+ ))

number of accepted runs: 1251 out of 2000 (62.55%)
user system elapsed

0.541 0.160 0.350

> MCMC4$count

dr_steps Alfasteps num_accepted num_covupdate
1700 5100 1251 19

We plot the generated chains for both parameters and for the four runs in one plot (figure
5). Calling plot with mfrow=NULL prevents the plotting function to overrule these settings.

> par(mfrow = c(4, 2))
> par(mar = c(2, 2, 4, 2))
> plot(MCMC , mfrow = NULL, main = "MH")
> plot(MCMC2, mfrow = NULL, main = "AM")
> plot(MCMC3, mfrow = NULL, main = "DR")
> plot(MCMC4, mfrow = NULL, main = "DRAM")
> mtext(outer = TRUE, side = 3, line = -2, at = c(0.05, 0.95),
+ c("y1", "y2"), cex = 1.25)
> par(mar = c(5.1, 4.1, 4.1, 2.1))

The 2-D plots show the banana shape:

> par(mfrow = c(2, 2))
> xl <- c(-3, 3)
> yl <- c(-1, 8)
> plot(MCMC$pars, main = "MH", xlim = xl, ylim = yl)
> plot(MCMC2$pars, main = "AM", xlim = xl, ylim = yl)
> plot(MCMC3$pars, main = "DR", xlim = xl, ylim = yl)
> plot(MCMC4$pars, main = "DRAM", xlim = xl, ylim = yl)

Finally, we test convergence to the original distribution. This can best be done by estimating
means and covariances of the transformed parameter values.
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Figure 5: The bananas - see text for R-code

> trans <- cbind(MCMC4$pars[ ,1], Banana(MCMC4$pars[ ,1], MCMC4$pars[ ,2]))
> colMeans(trans) # was:c(0,0)

[1] 0.08365834 0.07091574

> apply(trans, 2, sd) # was:1

[1] 0.9403218 0.9798653

> cov(trans) # 0.9 off-diagonal

[,1] [,2]
[1,] 0.8842051 0.8199264
[2,] 0.8199264 0.9601359
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6. A simple chemical model
This is an example from (Haario et al. 2006). We fit two parameters that describe the
dynamics in the following reversible chemical reaction:

A ⇀↽ k2k1B.

Here k1 is the forward, k2 the backward rate coefficient.
The ODE system is written as:

dA

dt
= −k1 · A + k2 · B

dB

dt
= +k1 · A − k2 · B,

with initial values A0 = 1, B0 = 0.
The analytical solution for this system of differential equations is given in (Haario et al. 2006).

6.1. Implementation in R

First a function is defined that takes as input the parameters (k) and that returns the values
of the concentrations A and B, at selected output times.

> Reaction <- function (k, times)
+ {
+ fac <- k[1]/(k[1]+k[2])
+ A <- fac + (1-fac)*exp(-(k[1]+k[2])*times)
+ return(data.frame(t=times,A=A))
+ }

All the concentrations were measured at the time the equilibrium was already reached. The
data are the following:

> Data <- data.frame(
+ times = c(2, 4, 6, 8, 10 ),
+ A = c(0.661, 0.668, 0.663, 0.682, 0.650))
> Data

times A
1 2 0.661
2 4 0.668
3 6 0.663
4 8 0.682
5 10 0.650

We impose parameter priors to prevent the model parameters from drifting to infinite values.
The prior is taken to be a broad Gaussian distribution with mean (2,4) and standard deviation
= 200 for both.
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The prior function returns the sum of squares function (weighted sum of squared residuals of
the parameter values with the expected value).

> Prior <- function(p)
+ return( sum(((p - c(2, 4))/200)^2 ))

First the model is fitted to the data; we restrict the parameter values to be in the interval
[0,1].

> residual <- function(k) return(Data$A - Reaction(k,Data$times)$A)
> Fit <- modFit(p = c(k1 = 0.5, k2 = 0.5), f = residual,
+ lower = c(0, 0), upper = c(1, 1))
> (sF <- summary(Fit))

Parameters:
Estimate Std. Error t value Pr(>|t|)

k1 1.0000 0.3944 2.536 0.0850 .
k2 0.5123 0.1928 2.657 0.0765 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.01707 on 3 degrees of freedom

Parameter correlation:
k1 k2

k1 1.0000 0.9959
k2 0.9959 1.0000

Here the observations have additive independent Gaussian errors with unknown variance σ2.
As explained above, the error variance is treated as a ’nuisance’ parameter, and a prior
distribution should be specified as a Gamma-type distribution for its inverse.
The residual error of the fit (sF$modfVariance) is used as initial model variance (argument
var0), the scaled covariance matrix of the fit (sF$cov.scaled) is used as the proposal distri-
bution (to generate new parameter values). As the covariance matrix is nearly singular this
is not a very good approximation.
The MCMC is initiated with the best-fit parameters (Fit$par); the parameters are restricted
to be positive numbers (lower).

> mse <- sF$modVariance
> Cov <- sF$cov.scaled * 2.4^2/2
> print(system.time(
+ MCMC <- modMCMC(f = residual, p = Fit$par, jump = Cov, lower = c(0, 0),
+ var0 = mse, wvar0 = 1, prior = Prior, niter = 2000)
+ ))

number of accepted runs: 1864 out of 2000 (93.2%)
user system elapsed

0.475 0.024 0.455
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Figure 6: Metropolis-Hastings MCMC of the chemical model - see text for R-code

The initial MCMC method, using the Metropolis-Hastings, has very high acceptance rate,
indicating that it has not at all converged; this is confirmed by plotting the chain (figure 6)

> plot(MCMC, Full = TRUE)

Better convergence is achieved by the adaptive Metropolis, updating the proposal every 100
runs (figure 7)

> MCMC2<- modMCMC(f = residual, p = Fit$par, jump = Cov, updatecov = 100,
+ lower = c(0, 0), var0 = mse, wvar0 = 1, prior = Prior, niter = 2000)

number of accepted runs: 720 out of 2000 (36%)

> plot(MCMC2, Full = TRUE)

The correlation between the two parameters is clear (figure 8):
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Figure 7: Adaptive Metropolis MCMC of the chemical model - see text for R-code
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Figure 9: Output ranges induced by parameter uncertainty of the chemical model - see text
for R-code

> pairs(MCMC2)

Finally, we estimate and plot the effects of the estimated parameters on the model output
(figure 9)

> sR <- sensRange(f=Reaction,times=seq(0,10,0.1),parInput=MCMC2$pars)

> plot(summary(sR), xlab = "time", ylab = "Conc")
> points(Data)
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7. Fitting a nonlinear model
The following model:

y = θ1 · x

x + θ2
+ ϵ

ϵ ∼ N(0, Iσ2)

is fitted to two data sets 1.

7.1. Implementation in R

First we input the observations:

> Obs <- data.frame(x=c( 28, 55, 83, 110, 138, 225, 375), # mg COD/l
+ y=c(0.053,0.06,0.112,0.105,0.099,0.122,0.125)) # 1/hour
> Obs2<- data.frame(x=c( 20, 55, 83, 110, 138, 240, 325), # mg COD/l
+ y=c(0.05,0.07,0.09,0.10,0.11,0.122,0.125)) # 1/hour
>

The Monod model returns a data.frame, with elements x and y :

> Model <- function(p,x) return(data.frame(x = x, y = p[1]*x/(x+p[2])))

In function Residuals, the model residuals and sum of squares are estimated. In this function,
modCost is called twice; first with data set "Obs", after which the cost function is updated
with data set "Obs2".

> Residuals <- function(p) {
+ cost <- modCost(model = Model(p, Obs$x), obs = Obs, x = "x")
+ modCost(model = Model(p, Obs2$x), obs = Obs2, cost = cost, x = "x")
+ }

This function is input to modFit which fits the model to the observations.

> print(system.time(
+ P <- modFit(f = Residuals, p = c(0.1, 1))
+ ))

user system elapsed
0.064 0.000 0.064

We plot the observations and best-fit line (figure 10)

> plot(Obs, xlab = "mg COD/l", ylab = "1/hour", pch = 16, cex = 1.5)
> points(Obs2, pch = 18, cex = 1.5, col = "red")
> lines(Model(p = P$par, x = 0:375))
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Figure 10: The two sets of Monod observations with best-fit line - see text for R-code

Starting from the best fit, we run several MCMC analyses.
The -scaled- parameter covariances returned from the summary function are used as estimate
of the proposal covariances (jump). Scaling is as in (Gelman, Varlin, Stern, and Rubin 2004).

> Covar <- summary(P)$cov.scaled * 2.4^2/2

7.2. Equal model variance

In the first run, we assume that both data sets have equal model variance σ2.
For the initial model variance (var0) we use the residual mean squares P$ms, returned by the
modFit function. We give low weight to the prior (wvar0=0.1)
The adoptive Metropolis MCMC is run for 1000 steps; the best-fit parameter set (P$par) is
used to initiate the chain (p). A lower bound (0) is imposed on the parameters (lower).

> s2prior <- P$ms
> print(system.time(
+ MCMC <- modMCMC(f = Residuals, p = P$par, jump = Covar, niter = 1000,
+ var0 = s2prior, wvar0 = 0.1, lower = c(0, 0))
+ ))

number of accepted runs: 224 out of 1000 (22.4%)
user system elapsed

3.124 0.012 3.114

The plotted results demonstrate (near-) convergence of the chain, and the sampled error
variance (Model)(figure 11).

> plot(MCMC, Full = TRUE)
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Figure 11: The mcmc, same error variance - see text for R-code
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7.3. Dataset-specific model variance

In the second run, a different error variance for the two data sets is used.
This is simply done by using, for the initial model variance the variables mean squares, before
they are weighted (P$var_ms_unweighted).

> varprior <- P$var_ms_unweighted
> print(system.time(
+ MCMC2 <- modMCMC(f = Residuals, p = P$par, jump = Covar, niter = 1000,
+ var0 = varprior, wvar0 = 0.1, lower = c(0, 0))
+ ))

number of accepted runs: 258 out of 1000 (25.8%)
user system elapsed

3.103 0.001 3.103

We plot only the residual sum of squares and the error variances; which=NULL does that
(figure 12).

> plot(MCMC2, Full = TRUE, which = NULL)

The summaries for both Markov chains show only small differences.

> summary(MCMC)

p1 p2 var_model
mean 0.14585561 49.984356 4.213936e-05
sd 0.00596486 6.927227 3.352869e-05
min 0.12850065 28.926491 7.303041e-06
max 0.16578426 75.905880 2.746997e-04
q025 0.14195455 45.016571 2.368401e-05
q050 0.14512915 48.678591 3.436602e-05
q075 0.14936779 54.308151 4.742310e-05

> summary(MCMC2)

p1 p2 sig.var_y sig.var_y.1
mean 0.145822650 49.668926 3.206104e-05 1.755564e-04
sd 0.005440936 7.005069 2.431168e-05 1.184691e-04
min 0.132350822 36.534122 8.849562e-06 2.449403e-05
max 0.173729210 90.986110 2.380429e-04 9.371530e-04
q025 0.142030486 44.587417 1.704036e-05 9.874067e-05
q050 0.145943571 49.849032 2.431048e-05 1.327817e-04
q075 0.149363981 53.466464 3.708073e-05 2.080904e-04

1A similar example is also discussed in vignette ("FMEother"). Here the emphasis is on the MCMC method
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Figure 12: The mcmc chain, separate error variance per data set - see text for R-code
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If var0 has the same number of elements as the number of data points, then distinct error
variances for each data point will be estimated.

8. Finally
This vignette is made with Sweave (Leisch 2002).
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