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Chapter 1

Short introduction to
Generalized Random
Tessellation Stratified
sampling (GRTS)

Yet to be written. .. [Stevens and Olsen) [1999| |2003, {2004, Theobald et al.
2007]



Chapter 2

Our implementation of

GRTS

For the sake of simplicity we assume that we have a square grid with 8 rows
and 8 columns and we would like to take a spatially balanced sample of 19 grid
cells. Each grid cell has a unique set of 2D coordinates: the row id and the

column id (table2.1)).
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Table 2.1: 2D coordinates of a 8 x 8 matrix

2.1 Coding of 2D coordinates into 1D address

We start the convertion by splitting the matrix in 4 submatrices (level 1).
We split it in half along the x-axis and in half along the y-axis. A single binary
digit for each axis is sufficient to give each submatrix a unique 2D code (table
23).

Instead of a two digit binary (base 2) code, we can use a single base 4 code:
a number from 0 to 3 (table[2.3).

The next step is to split each submatrix again in each four subsubmatrices
(level 2). Like before we number them from 0 to 3 (table[2.4). Next we prepend
this number to the code of the submatrices (table .
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Table 2.2: Binary 2D codes for the first level of submatrices.

Table 2.3: Base 4 1D codes for the first level of submatrices.

We keep repeating this procedure until all submatrices contain only one
grideell. In this example we have to do it only once more, resulting in table 26|

and 2.7 When the matrix is square and the number of rows is a power of two,
the procedure will take the same number of steps for each submatrix.
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Table 2.4: Base 4 1D codes for the second level of submatrices.

11 1131 31| 13 13|33 33
11 11 (31 31| 13 13|33 33
01 01|21 2103 03]23 23
01 01|21 2103 03|23 23

10 10 | 30 30| 12 12|32 32
10 10 | 30 30| 12 12| 32 32
00 00|20 201 02 02]22 22
00 00|20 201 02 0222 22

Table 2.5: Prepending the base 4 1D codes for the second level of submatrices
to the base 4 1D codes for the first level of submatrices.
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Table 2.6: Base 4 1D codes for the third level of submatrices.

111 311 | 131 331 || 113 313 | 133 333
011 211 | 031 231 || 013 213 | 033 233
101 301 | 121 321 || 103 303 | 123 323
001 201 | 021 221 || 003 203 | 023 223

110 310 | 130 330 || 112 312 | 132 332
010 210 | 030 230 || 012 212 | 032 232
100 300 | 120 320 || 102 302 | 122 322
000 200 | 020 220 | 002 202 | 022 222

Table 2.7: Combining the base 4 1D codes from all levels.



2.2 Randomisation

We randomise the above procedure at the point were we assign the number
to the submatrices. Instead of assigning the numbers 0 to 3 in a systematic
fashion, we do it at random. First we give an example for a 4 x 4 matrix. Table
2.8 and 2.9 indicate the randomised base 4 1D code for the level 1 and level 2
submatrices. Table combines them into a unique code per grid cell. Table
[2.17] gives the order of the grid cells based on their code in table 2.10] This
order or ranking is what the QuadratRanking() function returns.
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Table 2.8: Level 1 submatrices with randomised base 4 1D code.
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Table 2.9: Level 2 submatrices with randomised base 4 1D code.

33 03|02 32
23 13|22 12
11 21130 10
01 31|20 00

Table 2.10: Combined base 4 1D codes.

Tables 2.12] to give a complete example for a 8 x 8 matrix.
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Table 2.11: Order of randomised base 4 1D code.
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Table 2.12: Level 1 submatrices with randomised base 4 1D code.
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Table 2.13: Level 2 submatrices with randomised base 4 1D code.
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Table 2.14: Level 3 submatrices with randomised base 4 1D code.



013 313 | 303 203 | 222 022 | 032 132
113 213 | 103 003 || 322 122 | 232 332

033 233 | 223 323 || 112 012 | 002 302
133 333 | 023 123 || 212 312 | 102 202

111 011 | 221 121 || 110 310 | 000 200
211 311 | 321 021 | 210 010 | 300 100

331 231 | 001 101 | 020 220 | 030 130
031 131 | 201 301 || 320 120 | 330 230

Table 2.15: Combined base 4 1D codes.

7T 55151 35|42 10|14 30
23 39|19 31| 58 26|46 62
15 47|43 59122 6| 2 50
31 63|11 27| 38 54|18 34
21 5|41 2520 52| 0 32
37 53|57 9136 4|48 16
61 45| 1 17 8§ 40 | 12 28
13 29|33 49| 56 24|60 44

Table 2.16: Order of randomised base 4 1D code.




2.3 Sampling

The procedure above generates a randomised and spatially balanced order
of grid cells. Sampling n grid cells reduces to taking the first n grid cells along
the randomised order. Table is a sample of 19 grid cells from table

X X | X
X
X X | X
X X
X X
X X X
X X | X X
X

Table 2.17: A sample of 19 points for table

We replicate the sampling 1000 times to check whether a) each grid cell has
the same probability of being selected and b) the sampling is spatially balanced.

The first assumption is checked in table The probability of being
selected is very similar for all grid cells and near to the expected probability.
Note that for computational reasons we limited the number of replications to
1000. As the number of replications increases, the differences among grid cells
will be smaller.

32.0% 29.3% | 282% 29.0% || 29.3% 28.6% | 29.7% 27.0%
28.0% 30.7% | 30.5% 30.3% || 28.0% 30.5% | 30.3% 29.6%
29.9% 28.5% | 29.8% 27.9% || 30.0% 27.5% | 28.4% 32.9%
29.9% 29.2% | 33.2% 29.6% || 30.1% 33.1% | 31.4% 26.6%
28.7% 28.7% | 31.6% 31.2% || 31.0% 31.2% | 28.4% 30.7%
27.5% 32.2% | 27.9% 29.7% || 24.7% 32.5% | 30.6% 28.0%
31.2%  31.9% | 29.8% 30.3% || 31.4% 31.4% | 28.9% 29.3%
26.9% 31.2% | 29.2% 28.1% || 26.7% 30.1% | 28.9% 31.1%

Table 2.18: Proportion of 1000 replications in which the grid cell is selected when
sampling 19 grid cells using GRTS. The expected proportion is ;—2 =29.7%

The second assumption is checked for the level 1 submatrices in fig. [2.3] and
for the level 2 submatrices in fig. [2.3] Each subplot is a histogram of the number
of samples in each submatrix. Note that all the histogram are nearly identical.
Since each submatrix represents a part of the grid, we can conclude that the
GRTS sampling is spatially balanced.
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Figure 2.1: Histogram of the number of samples per level 1 submatrix.
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Figure 2.2: Histogram of the number of samples per level 2 submatrix.
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Chapter 3
Using the package

The workhorse of the package is the QuadratRanking () function. This func-
tion expects a zero-filled, square matrix with the number of rows equal to a power
of 2. However the function does not do any checking on those assumptions. That
would be a computational burden since the function is called recursively. There-
fore one should not call QuadratRanking() directly but use the global wrapper
function GRTS(). This wrapper function handles more conviniently different
input formats.

3.1 Calculating a GRTS randomisation for a square
matrix

In case of a square matrix we just supply the number of rows to the GRTS ()
function. Note that if the number of rows is not a power of 2, then Quadrat-
Count () is run with the next power of 2 as number of rows. Afterwards, the
matrix is trimmed to contain the required number of rows.

> GRTS(8)

(,1]1 [,2]1 [,3] [,4] [,5] [,6] [,7]1 [,8]
[1,J 83 5 9 25 12 44 36 52
[2,] 37 21 567 41 60 28 4 20
[3,] 17 33 61 29 40 56 16 32
(4,1 49 1 13 45 24 8 0 48
[6,] 26 58 18 2 47 31 43 59
[6,] 10 42 34 50 63 15 27 11
[7,] 6 22 62 30 19 3 23 39
[8,] 54 38 46 14 51 3 7 55

> GRTS(7)

(,11 [,21 [,31 [,4] C,5]1 [,6] [,7]
[1,1 43 21 4 29 28 39 36

11



[2,] 32 8 40 17 16 3 13
[3,] 23 10 14 25 7 20 9
[4,1] 34 47 37 1 42 31 46
[5,] 12 35 38 15 41 18 44
[6,] 24 0 2 27 30 5 33
[7,] 6 19 22 45 11 48 26

3.2 Calculation a GRTS randomisation for poly-
gons

Typically GIS-polygons are used to localise the study area. To accomodate
this situation, GRTS() can handle objects of the class SpatialPolygons. Let’s
first create an object with a hypothetical study area consisting of 3 polygons:
one island polygon and two adjacent polygons of which one contains a hole.

#define a SpatialPolygons object

Sr1 <- Polygon(cbind(c(2, 4, 4, 1,2), c(2, 3, 5, 4, 2)))

Sr2 <- Polygon(cbind(c(5, 4, 2, 5), c(1.5, 2.5, 1.5, 1.5)))

Sr3 <- Polygon(cbind(c(4, 4, 5, 10.1, 4), c(5, 3, 2, 5.1, 5)))

Sr4 <- Polygon(cbind(c(4.5, 5.5, 6, 5.5, 4.5), c(4, 3, 3, 4, 4)), hole
Srsl <- Polygons(list(Sr1), "s1")

Srs2 <- Polygons(1list(Sr2), "s2")

Srs3 <- Polygons(list(Sr3, Sr4), "s3/4")

SpP <- SpatialPolygons(list(Srsi1,Srs2,Srs3), 1:3)

>
>
>
>
>
>
>
>
>
> plot(SpP, col = 1:3, pbg="white", axes = TRUE)

2 3 4 5
l

When we pass a SpatialPolygons object to GRTS() we must specify the
cellsize argument. This defines dimensions of a single grid cell and is in the

12
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same units as the coordinates of the polygons. The variable Ranking from the
GRTS output contains the randomised order of the grid cells.

spplot (output, sp.layout = list(pls), col.regions = terrain.colors(100),
scales = list(draw = TRUE), xlim = limits[, 1], ylim = limits[, 2])

> pls <- list("sp.polygons", SpP, col = "black", first = FALSE)

> output <- GRTS(SpP, cellsize = 0.1)

> limits <- apply(cbind(bbox (output), bbox(SpP)), 1, function(x){
+ range(pretty(x))

+ 1)

>

+

| | | | | 3500
3000
2500
o 2000
1500
1000

Changing the cellsize impacts the resolution of the grid.

spplot (output, sp.layout = list(pls), col.regions = terrain.colors(100),
scales = list(draw = TRUE), xlim = limits[, 1], ylim = limits[, 2])

> output <- GRTS(SpP, cellsize = 0.5)

> limits <- apply(cbind(bbox(output), bbox(SpP)), 1, function(x){
+ range(pretty(x))

+ P

>

+

By default the grid starts at the south-west corner (minimum of both co-
ordinates) of the bounding box of the polygon object. When we specify Ran-
domStart = TRUE, this origin is shifted at random in both directions between 0
and cellsize units.

13



spplot (output, sp.layout = list(pls), col.regions = terrain.colors(100),
scales = list(draw = TRUE), xlim = limits[, 1], ylim = limits[, 2])

> output <- GRTS(SpP, cellsize = 0.5, RandomStart = TRUE)

> limits <- apply(cbind(bbox (output), bbox(SpP)), 1, function(x){
+ range(pretty(x))

+ 1)

>

+

150

100

50

Another optional argument is Subset = TRUE. In this case the grid will be
subsetted and only the grid cells who’s centroid is located in one of the polygons
are retained.

> output <- GRTS(SpP, cellsize = 0.1, Subset = TRUE)

> limits <- apply(cbind(bbox (output), bbox(SpP)), 1, function(x){
+ range(pretty(x))

+ 1)

> spplot(output, sp.layout = list(pls), scales = list(draw = TRUE),
+ col.regions = terrain.colors(100),

+ xlim = limits[, 1], ylim = limits[, 2])

Suppose we want a sample of 19 points. After the GRTS randomisation, we
select the 19 grid cells with the lowest ranking.

> n <- 19
> #calculate the treshold value

14



MaxRanking <- max(head(sort (output$Ranking), n))
#do the selection
Selection <- subset(output, Ranking <= MaxRanking)

col.regions = rainbow(n),
x1lim = limits[, 1], ylim = limits[, 2])

+ + V.V VvV

N
g
(<2}
©
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Let us test whether GRTS does a better job at generating a spatially bal-
anced sample than a simple random sample (SRS). First we take a GRTS sample
of 19 and count the number of points in each polygon. We repeat this several
times and look at the distribution of the number of samples per polygon. We do
the same thing for a simple random sample. The expected number of samples
per polygon is the sample size multiplied with the relative area of the polygon.

The figure below shows the distribution with the number of samples for the
three polygons. Polygon A is medium sided polygon without hole. Polygon B is
the small triangular polygon. Polygon C is the large polygon with a hole. The
expected number of samples is indicates with a blue line. The distribution from
the GRTS sampling have a smaller variance than the simple random sampling,
indicating that GRTS sampling is more spatially balanced.

> testGRTS <- t(replicate(reps, {

+  #do the randomisation

+ output <- GRTS(SpP, cellsize = 0.1, Subset = TRUE, RandomStart
+ #calculate the treshold value

+  MaxRanking <- max(head(sort (output$Ranking), n))

+  #do the selection

+ Selection <- subset(output, Ranking <= MaxRanking)

+  #do the overlay

+ table(Polygon = factor(over(Selection, SpP), levels = 1:3,
+ labels = c("A", "B", "C")))

+ 1))

> testGRTS <- melt(data = testGRTS)

> testGRTS$Type <- "GRTS"

> testSRS <- t(replicate(reps, {

+ Selection <- spsample(SpP, n = n, type = "random")

15

spplot(Selection, sp.layout = list(pls), scales = list(draw = TRUE),

TRUE)
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table(Polygon = factor(over(Selection, SpP), levels = 1:3,
labels = c("A", "B", "C")))
)
testSRS <- melt(data = testSRS)
testSRS$Type <- "SRS"
test <- rbind(testGRTS, testSRS)
areas <- sapply(SpP@polygons, function(x){
tmp <- sapply(x@Polygons, function(y){
c(ifelse(y@hole, -1, 1), yQ@area)
»
sum(tmp[1, ] * tmp[2, 1)
»
reference <- data.frame(Polygon = factor(c("A", "B", "C")),
Expected = n * areas / sum(areas))
ggplot (test) +
geom_density(aes(x = value, colour = Type), adjust = 2) +
geom_vline(data = reference, aes(xintercept = Expected), colour
facet_grid(Polygon ~ .) +
xlab("Number of samples per polygon")
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3.3 Unequal probability sampling

> Weights <- data.frame(

+ ID = C("Sl", ngoM, 1153/411),

+ Weight = c(1, 5, 2)

+)

> rownames (Weights) <- Weights$ID

> Weights$Expected <- n * areas * Weights$Weight / sum(areas * Weights$Weight)

> SpP <- SpatialPolygonsDataFrame (SpP, data = Weights)

> SpP$ID <- factor (SpP$ID)

> test <- replicate(reps, {

+  GRTSorder <- GRTS(SpP, cellsize = 0.1, Subset = TRUE)

+  GRTSorder$Weight <- over(GRTSorder, SpP[, "Weight"])$Weight / (max(SpP$Weight))
+  GRTSorder$Weight <-

+ GRTSorder$Weight *

+ pmin(

+ 1,

+ length(GRTSorder) / sum(GRTSorder$Weight)

+ )

+  GRTSups <-

+ GRTSorder[

+ rbinom(

+ length(GRTSorder),

+ size = 1,

+ GRTSorder$Weight

+
+
+
+
+
+
+
+
+
>
>
>
>
+
+
+
+

prob
"Ranking"]
table(
over(
GRTSups [order (GRTSups$Ranking) <= n, ],
SpP[, "ID"]
)$ID,
useNA = 'ifany')
»
test <- melt(t(test))
colnames (test) <- c("Run", "ID", "Estimate")
test <- merge(test, Weights)
ggplot(test, aes(x = Estimate)) +
geom_histogram(binwidth = 1) +
geom_vline (aes(xintercept = Expected), colour = "red") +
xlab("Number of samples per polygon") +
facet_wrap(~ID)

17
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