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Abstract

The GmmEst package (https://R-Forge.R-project.org/projects/uibk-rprog-2017/)
estimates the parameter vector of user defined models using the generlized methods of
moments estimation framework. A brief overview of the package is provided, along with
some illustrations.
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1. Introduction
The Generalized Method of Momentds (GMM) framework is one of the main tools to analyze
economic and financial data, introduced by Hansen (1982) in the econometrics literature. In
contrast to Maximum Likelihood estimation, GMM works without the need to specify the
likelihood function. The main idea of the estimation framework is the usage of population
moment conditions that are deduced from econometric models. The population moment
condition is defined by

E[f(xt, θ0)] = 0 (1)
where θ0 is a vector of unknown parameters which are to be estimated, xt a vector of random
variables and f() a vector of functions.
The GMM estimator uses the sample counterpart of the population moment condition and
chooses the estimated θ in such a way that the different moment conditions are as close to
zero as possible. This is achieved by minimizing QT (θ)

QT (θ) = T−1
T∑
t=1

f(xt, θ) WT T
−1

T∑
t=1

f(xt, θ) (2)

where WT is a positive semi-definite matrix which may depend on the data but converges in
probability to a positive definite matrix of constants.
See Greene (2011) for a short introduction into GMM estimation and Hall (2005) for a com-
prehensive treatment of GMM estimation. Cochrane (2005) discussess the application of
GMM with a finance focus. Besides them, the seminal article by Hansen (1982) should not
be missing in the list of references.

2. Implementation
In difference to many other packages for R (R Core Team 2017), the main model fitting
function GmmEst() does not use a formula-based interface, but instead requires a user defined

https://R-Forge.R-project.org/projects/uibk-rprog-2017/
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function of the sample moment conditions.1. The function returns an (S3) object of class
GmmEst:

GmmEst(func, theta0, data,
est_type=c("2step","1step","iter"),
func_jac=NULL, initial_W=NULL,
crit=10e-7, itermax=100,
optim_method=c("BFGS","Nelder-Mead","L-BFGS-B"),
control = GmmEst_control(\dots), \dots)

A number of standard S3 methods are provided, see Table 1.
The user supplied function of the sample moment conditions func should have the form
func(param,data) and should return a number of observations times number of moments
matrix - corresponding to the sample counterpart of f(xt, θ). See the next section for two
examples.

3. Illustration

3.1. An easy example: GMM can do OLS

Suppose we want to estimate a simple linear model.

yi = α+ β · xi + εi (3)

The typical OLS assumptions are that E[εi] = 0 and E[εixi] = 0. We can use that assumption
to form the population moment conditions:

0 = E[yi − α0 − β · xi] (4)
0 = E[(yi − α0 − β · xi) · xi] (5)

1A formula-based interface will be implemented for linear models in the near future.

Method Description
print() Simple printed display with coefficients
summary() Standard summary; returns summary.GmmEst object (with print()

method)
coef() Extract coefficients
vcov() Associated covariance matrix
nobs() Extract number of observations
bread() Extract bread for sandwich covariance
estfun() Extract estimating functions (= gradient contributions) for sand-

wich covariances

Table 1: S3 methods provided in GmmEst.
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as well as the the sample counterparts:

0 = EN [yi − a− b · xi] (6)
0 = EN [(yi − a− b · xi) · xi] (7)

where EN is the short form for N−1 ∑N
i=1() and θ0 = (α, β) and θ = (a, b). Defined in such

a way, we have 2 unknown parameters and 2 moment conditions such that the model is just
identified.
Let’s use the standard mtcars dataset to estimate a simple linear regression of miles per
gallons on horse power by the efficient two-step feasible GMM estimator made popular by
Hansen (1982). I start by loading the data and by defining the sample moment condition
function f(xi, θ).

data = mtcars
mom_cond = function(theta, data){

a = theta[1]
b = theta[2]
y = data$mpg
x = data$hp

u = y - a - b*x
return(cbind(u,u*x))

}

While not necessary to estimate the model, especially in that case, the so called d-matrix,
which is the gradient/jacobian of the sample moment conditions w.r.t. the parameters
(EN [∂f(xi,θ0)

∂θ0
]) is genereally important. If not supplied by the user, it will be numerically

approximated. If supplied, it is used in the minimization as well. Although the jacobian
in that case does not depend on the parameter itself, the function is defined with the same
arguments as the moment condition function.

mom_cond_grad = function(theta, data){
x = data$hp

d1 = -1
d2 = -mean(x)
d3 = -mean(x)
d4 = -mean(x^2)

d = matrix(c(d1,d2,d3,d4),nrow=2,ncol=2)
return(d)

}

Using the a = 20 and b = 0 as starting values, we can simply estimate the model by
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theta0 = c(20,0)
mdl_gmm = GmmEst(mom_cond, theta0, mtcars, est_type = "2step",

optim_method = 'BFGS', func_jac = mom_cond_grad)
summary(mdl_gmm)

## model did converge
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## [1,] 30.09886 2.07661 14.494 < 2e-16 ***
## [2,] -0.06823 0.01356 -5.031 4.87e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Model is just-identified
## J-statistic: 1.547e-16 , p-value: NA

and compare it to a an OLS regression:

mdl_lm = lm(mpg~hp,data)
coeftest(mdl_lm, df = Inf, vcov = vcovHC, type = "HC1")

##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 30.098861 2.076615 14.4942 < 2.2e-16 ***
## hp -0.068228 0.013560 -5.0314 4.868e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated coefficients are identical as well as the standard errors, which are by default
robust standard errors w.r.t. heteroskedasticity in GmmEst.

3.2. The standard example: Estimation of the risk-aversion parameter in
the Consumption based Asset Pricing Model

Assuming power utility for an representative investor, the consumption based asset pricing
model predicts that

Et[β
Ct+1
Ct

−γ
Ret+1] = 0 (8)

where C is consumption in period t and t + 1, γ is the risk-aversion parameter, β is the
time-preference parameter and Ret+1 is an excess return of an (any) asset. Furthermore, Et
denote the expectation conditional on time t information. In finance, one is often interested
in estimating this Euler equation as it is important w.r.t. the equity premium puzzle.
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The package GmmEst contains a dataset that can be used to estimate the model.2 In the
dataset with 63 yearly observations from 1952 to 2014, the gross consumption growth in
the US is included as well as the (excess net) returns of some widely known asset portfolios
(rmrf, smb, hml) and the (net) risk free rate (rf). Using the market portfolio rmrf and
the high-minus-low portfolio hml, we can estimate γ, fixing β = 1 and hence estimating the
model assuming no time-preference by the representative investor. In the following, I load
the data and define the moment conditions as well as the gradient of the moment conditions
and estimate the parameter using a one-step GMM estimator.

data("data_consumption",package = "GmmEst")
mom_cond = function(params, data){

gamma = params[1]

beta = 1
dc = data$dc
rmrf = data$rmrf
hml = data$hml
rf = data$rf

gt1 = beta*dc^(-gamma)*rmrf
gt2 = beta*dc^(-gamma)*hml
gt = cbind(gt1, gt2)
return(gt)

}

mom_cond_grad = function(params,data){
gamma = params[1]

beta = 1
dc = data$dc
rmrf = data$rmrf
hml = data$hml

d1 = -dc^(-gamma)*log(dc)*rmrf*beta
d2 = -dc^(-gamma)*log(dc)*hml*beta
d = c(mean(d1),mean(d2))
return(d)

}

mod1 = GmmEst(mom_cond, 100, data, est_type = "1step",
optim_method = 'BFGS', func_jac = mom_cond_grad)

summary(mod1)

## model did converge
##

2See the descrition of the dataset for further information about the variables.
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## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## [1,] 80.96 52.20 1.551 0.121
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Model is over-identified
## J-statistic: 0.02543 , p-value: 0.873

The estimated value of 80.96 is huge and the heart of the equity premium puzzle as it needs
a huge value of γ to make sense of the high equity premium. Nevertheless, it is not statically
significant if we put the same weight initial weight on the both portfolios. The J-test of
overidentification does not reject the model and tells us that the pricing errors are not jointly
significant different from zero.
If we apply the efficient two-step GMM procedure, more weight is given to the moments that
are better measured, i.e. the hml portfolio is less volatile than rmrf to get a more efficient
estimate of γ in a statistical sense.

mod2 = GmmEst(mom_cond, 100, data, est_type = "2step",
optim_method = 'BFGS', func_jac = mom_cond_grad)

summary(mod2)

## model did converge
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## [1,] 88.34 33.41 2.644 0.0082 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Model is over-identified
## J-statistic: 0.0263 , p-value: 0.871

While the estimate is now a higher with 88.34, the standard error nearly cut in half. The
J-test changed only slightly and still doesn’t reject the model.3
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