QuACN: Quantitative Analyze of Complex Networks

Laurin AJ Mueller, Michael Schutte, Karl G Kugler, Matthias Dehmer*

November 19, 2014

Contents

1 Overview 2
1.1 Installation 2
2 Networks 2
2.1 graphNEL 2
2.2 Adjacency Matrix 3
2.3 Extract the Largest Connected Subgraph 3
2.4 Enumerate Edge-Deleted Subgraphs 4
3 Network Descriptors 4
3.1 Descriptors Based on Distances in a Graph 4
3.2 Descriptors Based on Other Graph-Invariants 8
3.3 Classical Entropy-based Descriptors 11
3.4 More Recent Graph Complexity Measures 16
3.5 Parametric Graph Entropy Measures 19
3.6 Eigenvalue-based Descriptors 23
3.7 Subgraph Measures 27
3.8 ID numbers 28
4 Calculating Multiple Descriptors at Once 31
5 Session Info 31

[^0]
1 Overview

For information about the actual build see the projects website:

- R-Forge: http://quacn.r-forge.r-project.org/
- CRAN: http://cran.r-project.org/web/packages/QuACN/

This vignette provides an overview about the usage of QuACN.
Chapter 2 will describe how to import already exiting networks. In Chapter 3 a brief description of the implemented measures is presented, and it demonstrates how to call the related method in R.

1.1 Installation

QuACN uses the packages graph and RBGL from the Bioconductor project. Before installing QuACN, Bioconductor with the corresponding packages needs to be installed. For instructions see the Bioconductor website:

- Bioconductor: http://www.bioconductor.org/

Note, that QuACN also depends on the Rmpfr package. Therefore, the software GMP (http://gmplib. org/) and MPFR (http://www.mpfr.org/) needs to be installed to install the package correctly:

- Windows: The package should install without problems.
- Ubuntu/Debian: Make sure that the libraries libgmp3-dev and libmpfr-dev are installed.

For more information see the corresponding websites, or the documentation of the Rmpfr package (http: //rmpfr.r-forge.r-project.org/).

After installing GMP and MPFR everything is ready to install QuACN. Other dependencies will be installed automatically during the installation. To install the package from $C R A N$ simply type:

```
> install.packages("QuACN")
```


2 Networks

This section shows how to create networks in R to use them with QuACN.

2.1 graphNEL

We generate a random unweighted undirected graph with 8 nodes. This graph will be used to explain the implemented methods. To analyze a network the network has to be represented by a graphNEL-object, which is part of the Bioconductor graph package.

```
> library("QuACN")
> set.seed(666)
>g <- randomGraph(1:8, 1:5, 0.36, weights=FALSE)
>g
A graphNEL graph with undirected edges
Number of Nodes = 8
Number of Edges = 16
```


2.2 Adjacency Matrix

To create a graphNEL object from an adjacency matrix A, just type following command:
$>A$
12345678
101111011
2101111000
$\begin{array}{lllllllll}3 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0\end{array}$
4111101011
5111110100
600001000
710010001
810010010
$>g<-$ as(A, "graphNEL")
$>g$
A graphNEL graph with undirected edges
Number of Nodes $=8$
Number of Edges $=16$
Some descriptors, which are specially marked throughout this document, require vertex and/or edge weights. Known attributes are:

- "atom": Atomic number (such as 8) or chemical symbol (such as "0") of a graph vertex.
- "bond": Conventional bond order of an edge, i.e. 1 for single bonds, 2 for double bonds, 3 for triple bonds and 1.5 for aromatic bonds.

These can be set as follows:

```
> nodeDataDefaults(g, "atom") <- "C"
> nodeData(g, "6", "atom") <- "0"
> edgeDataDefaults(g, "bond") <- 1
> edgeData(g, "2", "3", "bond") <- 2
```

If existing networks are to be analyzed with QuACN, R offers several ways to import them. (It is important that the networks are represented by graphNEL-objects.) Note that there is no general procedure to get networks into an R workspace. Some possibilities to import network data are listed below:

- Adjacency matrix: A representation of a network as an adjacency matrix can be easily imported and converted into a graphNEL object.
- Node- and Edge-List: With a list of nodes and Edges it is easy to create a graphNEL-object.
- read.graph(): The read.graph() method of the graph-package offers the possibility to import graphs that a represented in different formats. For details see the manual of the graph-package.
- System Biology Markup Language(SBML) [1]: With the $R S B M L$-package it is possible to import SBML-Models.
- igrah-package: Networks created with the igraph-package can be converted into graphNEL objects.

2.3 Extract the Largest Connected Subgraph

Many of the topological network descriptors that are implemented in QuACN only work on connected graphs. Often this is not the case with biological networks, so that the largest connected component (LCC) has to be extracted first. For extracting the LCC we provide the method getLargestSubgraph (g), as shown in [2]:

```
> g2 <- randomGraph(paste("A", 1:100, sep=""), 1:4, p=0.03, weights=FALSE)
> lcc <- getLargestSubgraph(g2)
> lcc
A graphNEL graph with undirected edges
Number of Nodes = 7
Number of Edges = 12
```


2.4 Enumerate Edge-Deleted Subgraphs

Some descriptors require a list of all distinct subgraphs which can be generated from a graph by removing one or two edges. The concerning methods obtain this information automatically, but for efficiency reasons, the user might want to pre-calculate and reuse it:

```
> sg.1ed <- edgeDeletedSubgraphs(g)
> sg.2ed <- edgeDeletedSubgraphs(sg.1ed)
```

Note that the method edgeDeletedSubgraphs (g) accepts lists or single instances of graphNEL objects or adjacency matrices, but it always returns a list of adjacency matrices.

3 Network Descriptors

This section provides a overview of the network descriptors that are included in the QuACN package. Here we describe the respective descriptor and how to call it in R . The gray numbers in the left margin show the necessary descriptor numbers for the calculateDescriptors method; see section 4 below for details.

Many descriptors have at least two parameters, the graphNEL-object and the distance matrix representing the network. It is not necessary to pass the distance matrix to a function. If the parameters stays empty or is set to $N U L L$ the distance matrix will be estimated within each function. But if the user wants to calculate more than one descriptor, it is recommended to calculate the distance matrix separately and pass it to each method. Some of the methods need the degree of each node or the adjacency matrix to calculate their results. If they were calculated once they should have kept for later use. For large networks in particular, it saves a lot of time to not calculate these parameters for each descriptor again, and will enhance the performance of the program to be developed.

```
> mat.adj <- adjacencyMatrix(g)
> mat.dist <- distanceMatrix(g)
> vec.degree <- graph::degree(g)
> ska.dia <- diameter(g)
> ska.dia <- diameter(g, mat.dist)
```

In the definitions below, let $G=(N(G), E(G))$ be a finite and connected graph. $N(G)$ and $E(G)$ are called vertex and edge set of G, respectively. As $|N(G)|<\inf$, we can define $|N(G)|:=N$.

3.1 Descriptors Based on Distances in a Graph

This section describes network measures based on distances in the network.

Wiener Index [3:

$$
\begin{equation*}
W(G):=\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} d\left(v_{i}, v_{j}\right) . \tag{1}
\end{equation*}
$$

$d\left(v_{i}, v_{j}\right)$ stands for shortest distances between $v_{i}, v_{j} \in N(G)$.
> wien <- wiener (g)
> wiener (g, mat.dist)
[1] 42

Harary Index [4]:

$$
\begin{equation*}
H(G):=\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N}\left(d\left(v_{i}, v_{j}\right)\right)^{-1}, \quad i \neq j \tag{2}
\end{equation*}
$$

> harary (g)
[1] 21.66667
> harary (g, mat.dist)
[1] 21.66667

Balaban J Index [5]:

$$
\begin{equation*}
J(G):=\frac{|E|}{\mu+1} \sum_{\left(v_{i}, v_{j}\right) \in E}\left[D S_{i} D S_{j}\right]^{-\frac{1}{2}} \tag{3}
\end{equation*}
$$

> balabanJ (g)
[1] 2.714212
> balabanJ(g, mat.dist)
[1] 2.714212
where $|E(G)|:=|E|$ denotes the number of edges of the complex network, $D S_{i}$ denotes the distance sum (row sum) of v_{i} and $\mu:=|E|+1-N$ denotes the cyclomatic number.

Mean Distance Deviation [6]:

See subsection 3.1.

Compactness [7]:

$$
\begin{equation*}
C(G):=\frac{4 W}{N(N-1)} . \tag{4}
\end{equation*}
$$

> compactness (g)
[1] 3
> compactness(g, mat.dist)
[1] 3
> compactness(g, mat.dist, wiener(g, mat.dist))
[1] 3

Product of Row Sums Index [8]:

$$
\begin{equation*}
\operatorname{PRS}(G)=\prod_{i=1}^{N} \mu\left(v_{i}\right) \quad \text { or } \quad \log (\operatorname{PRS}(G))=\log \left(\prod_{i=1}^{N} \mu\left(v_{i}\right)\right) \tag{5}
\end{equation*}
$$

> productOfRowSums (g, log=FALSE)
[1] 124416000
> productOfRowSums (g, log=TRUE)
[1] 26.8906
> productOfRowSums(g, mat.dist, log=FALSE)
[1] 124416000
> productOfRowSums (g, mat.dist, log=TRUE)
[1] 26.8906

Hyper-distance-path Index [9]

$$
\begin{equation*}
D_{P}(G):=\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} d\left(v_{i}, v_{j}\right)+\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N}\binom{d\left(v_{i}, v_{j}\right)}{2} . \tag{6}
\end{equation*}
$$

> hyperDistancePathIndex (g)
[1] 58
> hyperDistancePathIndex(g, mat.dist)
[1] 58
> hyperDistancePathIndex(g, mat.dist, wiener(g, mat.dist))
[1] 58

Skorobogatov and Dobrynin 6]:

This method calculates several descriptors:

1. Vertex Eccentricity 6)

$$
\begin{equation*}
e(v):=\max _{u \in N(G)} d(u, v) \tag{7}
\end{equation*}
$$

> dob <- dobrynin(g)
> dob <- dobrynin(g, mat.dist)
> dob\$eccentricityVertex
12345678
22222333
2. Eccentricity of a graph (6):

$$
\begin{equation*}
e(G):=\sum_{v \in N(G)} e(v) \tag{8}
\end{equation*}
$$

> dob\$eccentricityGraph
[1] 19
3. Average Vertex Eccentricity of a Graph [6]:

$$
\begin{equation*}
e_{a v}(G):=\frac{e(G)}{N} \tag{9}
\end{equation*}
$$

> dob\$avgecc0fG
[1] 2.375
4. Vertex Eccentric [6]:

$$
\begin{equation*}
\Delta e(v):=\left|e(v)-e_{a v}(G)\right| \tag{10}
\end{equation*}
$$

> dob\$ecentricVertex

1	2	3	4	5	6	7	8
0.375	0.375	0.375	0.375	0.375	0.625	0.625	0.625

5. Eccentric of a Graph [6]:

$$
\begin{equation*}
\Delta G:=\frac{1}{N} \sum_{v \in N(G)} \Delta e(v) \tag{11}
\end{equation*}
$$

> dob\$ecentricGraph
[1] 0.46875
6. Vertex Centrality 6]:

$$
\begin{equation*}
D(v):=\sum_{v \in N(G)} d(v, u) \tag{12}
\end{equation*}
$$

> dob\$vertexCentrality
$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$
$\begin{array}{lllllll}8 & 10 & 10 & 8 & 9 & 15 & 12 \\ 12\end{array}$
7. Graph Integration [6]:

$$
\begin{equation*}
D(G):=\frac{1}{2} \sum_{v \in N(G)} D(v) \tag{13}
\end{equation*}
$$

> dob\$graphIntegration
[1] 42
8. Unipolarity [6]:

$$
\begin{equation*}
D^{*}(G):=\min _{u \in N(G)} D(v) \tag{14}
\end{equation*}
$$

> dob\$unipolarity
[1] 8
9. Distance Vertex Deviation [6]:

$$
\begin{equation*}
\Delta D^{*}(v):=D(v)-D^{*}(G) \tag{15}
\end{equation*}
$$

> dob\$vertexDeviation
12345678
02201744
10. Variation of a Graph [6]:

$$
\begin{equation*}
\operatorname{var}(g):=\max _{u \in N(G)} \Delta D^{*}(v) \tag{16}
\end{equation*}
$$

> dob\$variation
[1] 7
11. Centralization 6]:

$$
\begin{equation*}
\Delta G^{*}:=\sum_{v \in N(G)} \Delta D^{*}(v) \tag{17}
\end{equation*}
$$

> dob\$centralization
[1] 20
12. Average Distance of Graph Vertices [6]:

$$
\begin{equation*}
D_{a v}(g):=\frac{2 D(g)}{N} \tag{18}
\end{equation*}
$$

> dob\$avgDistance
[1] 10.5
13. Distance Vertex Deviation [6]:

$$
\begin{equation*}
\Delta D(v):=\left|D(v)-D_{a v}(G)\right| \tag{19}
\end{equation*}
$$

> dob\$distVertexDeviation

1	2	3	4	5	6	7	8
2.5	0.5	0.5	2.5	1.5	4.5	1.5	1.5

14. Mean Distance Deviation 6]:

$$
\begin{equation*}
\Delta D(G):=\frac{1}{N} \sum_{v \in N(G)} \Delta D(v) \tag{20}
\end{equation*}
$$

> dob\$meanDistVertexDeviation
[1] 1.875

3.2 Descriptors Based on Other Graph-Invariants

This section describes network measures based on other invariants than distances.

Index of Total Adjacency [10]:

$$
\begin{equation*}
A(G):=\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} a_{i j} . \tag{21}
\end{equation*}
$$

> totalAdjacency(g)
[1] 16
> totalAdjacency(g, mat.adj)
[1] 16

Zagreb Group Indices [11, 12]:

$$
\begin{equation*}
Z_{1}(G):=\sum_{i=1}^{N} k_{v_{i}} \tag{22}
\end{equation*}
$$

where $k_{v_{i}}$ is the degree of the node v_{i}.

$$
\begin{equation*}
Z_{2}(G):=\sum_{\left(v_{i}, v_{j}\right) \in E} k_{v_{i}} k_{v_{j}} . \tag{23}
\end{equation*}
$$

Modified, augmented and variable Zagreb indices:

$$
\begin{align*}
\operatorname{MZI}(G) & :=\sum_{\left(v_{i}, v_{j}\right) \in E} \frac{1}{k_{v_{i}} k_{v_{j}}}, \tag{24}\\
\operatorname{AZI}(G) & :=\sum_{\left(v_{i}, v_{j}\right) \in E}\left(\frac{k_{v_{i}} k_{v_{j}}}{k_{v_{i}}+k_{v_{j}}-2}\right)^{3}, \tag{25}\\
\operatorname{VZI}(G) & :=\sum_{\left(v_{i}, v_{j}\right) \in E} \frac{k_{v_{i}}+k_{v_{j}}-2}{k_{v_{i}} k_{v_{j}}} . \tag{26}
\end{align*}
$$

> zagreb1 (g)
[1] 32
> zagreb1 (g, vec.degree)
[1] 32
> zagreb2 (g)
[1] 334
> zagreb2(g, vec.degree)
[1] 334
> modifiedZagreb (g)
[1] 0.9569444
> modifiedZagreb(g, vec.degree)
[1] 0.9569444
> augmentedZagreb(g)
[1] 375.6957
> augmentedZagreb(g, vec.degree)
[1] 375.6957
> variableZagreb(g)
[1] 6.086111
> variableZagreb(g, vec.degree)
[1] 6.086111

Randić Connectivity Index [13]:

$$
\begin{equation*}
R(G):=\sum_{\left(v_{i}, v_{j}\right) \in E}\left[k_{v_{i}} k_{v_{j}}\right]^{-\frac{1}{2}} . \tag{27}
\end{equation*}
$$

randic (g)
[1] 3.768881
> randic(g, vec.degree)
[1] 3.768881

The Complexity Index B [10]:

$$
\begin{equation*}
B(G):=\sum_{i=1}^{N} \frac{k_{v_{i}}}{\mu\left(v_{i}\right)} . \tag{28}
\end{equation*}
$$

> complexityIndexB(g)
[1] 3.422222
> complexityIndexB(g, mat.dist)
[1] 3.422222
> complexityIndexB(g, mat.dist, vec.degree)
[1] 3.422222

Normalized Edge Complexity [10]:

$$
\begin{equation*}
E_{N}(G):=\frac{A(G)}{N^{2}} \tag{29}
\end{equation*}
$$

> normalizedEdgeComplexity(g)
[1] 0.25
> normalizedEdgeComplexity(g, totalAdjacency(g, mat.adj))
[1] 0.25

Atom-bond Connectivity [14]:

$$
\begin{equation*}
A B C(G):=\sum_{\left(v_{i}, v_{j}\right) \in E} \sqrt{\frac{k_{v_{i}}+k_{v_{j}}-2}{k_{v_{i}} k_{v_{j}}}} \tag{30}
\end{equation*}
$$

> atomBondConnectivity(g)
[1] 9.783013
> atomBondConnectivity(g, vec.degree)
[1] 9.783013

Geometric-arithmetic Indices [15]:

$$
\begin{align*}
& G A 1(G):=\sum_{\left(v_{i}, v_{j}\right) \in E} \frac{\sqrt{k_{v_{i}} k_{v_{j}}}}{\frac{1}{2}\left(k_{v_{i}}+k_{v_{j}}\right)} \tag{31}\\
& \operatorname{GA2}(G):=\sum_{\left(v_{i}, v_{j}\right) \in E} \frac{\sqrt{n_{i} n_{j}}}{\frac{1}{2}\left(n_{i}+n_{j}\right)} \tag{32}\\
& G A 3(G):=\sum_{\left(v_{i}, v_{j}\right) \in E} \frac{\sqrt{m_{i} m_{j}}}{\frac{1}{2}\left(m_{i}+m_{j}\right)} \tag{33}
\end{align*}
$$

where

$$
\begin{align*}
n_{i} & :=\left|\left\{x \in N(G): d\left(x, v_{i}\right)<d\left(x, v_{j}\right)\right\}\right|, \tag{34}\\
n_{j} & :=\left|\left\{x \in N(G): d\left(x, v_{j}\right)<d\left(x, v_{i}\right)\right\}\right|, \tag{35}\\
m_{i} & :=\left|\left\{f \in E: d\left(f, v_{i}\right)<d\left(f, v_{j}\right)\right\}\right|, \tag{36}\\
m_{j} & :=\left|\left\{f \in E: d\left(f, v_{j}\right)<d\left(f, v_{i}\right)\right\}\right| . \tag{37}
\end{align*}
$$

In this context, the distance between an edge $f=\{x, y\}$ and a vertex v is defined as $d(f, v):=\min \{d(x, v), d(y, v)\}$.

```
> geometricArithmetic1(g)
```

[1] 15.41511
> geometricArithmetic1(g, vec.degree)
[1] 15.41511
> geometricArithmetic2(g)
[1] 13.95217
> geometricArithmetic2(g, mat.dist)
[1] 13.95217
> geometricArithmetic3(g)
[1] 13.79587
> geometricArithmetic3(g, mat.dist)
[1] 13.79587

Narumi-Katayama Index [16]:
narumiKatayama(g)
[1] 25920
> narumiKatayama(g, vec.degree)
[1] 25920

3.3 Classical Entropy-based Descriptors

 distances etc.) using an equivalence criterion.Topological Information Content [17, 18]:
$\left|N_{i}^{V}\right|$ denotes the number of vertices belonging to the i-th vertex orbit.

```
> topologicalInfoContent(g)
```

\$entropy
[1] 2.25
\$orbits
[1] 22112
> topologicalInfoContent(g, mat.dist)
\$entropy
[1] 2.25
\$orbits
[1] 22112
> topologicalInfoContent(g, mat.dist, vec.degree)
\$entropy
[1] 2.25
\$orbits
[1] 22112

Bonchev - Trinajstić Indices [19]:

$$
\begin{equation*}
N K:=\prod_{i=1}^{N} k_{v_{i}} \tag{38}
\end{equation*}
$$

These measures are based on grouping the elements of an arbitrary graph invariant (vertices, edges, and

$$
\begin{equation*}
I_{o r b}^{V}(G):=-\sum_{i=1}^{k} \frac{\left|N_{i}^{V}\right|}{N} \log \left(\frac{\left|N_{i}^{V}\right|}{N}\right) . \tag{39}
\end{equation*}
$$

$$
\begin{align*}
I_{D}(G) & :=-\frac{1}{N} \log \left(\frac{1}{N}\right)-\sum_{i=1}^{\rho(G)} \frac{2 k_{i}}{N^{2}} \log \left(\frac{2 k_{i}}{N^{2}}\right), \tag{40}\\
I_{D}^{W}(G) & :=W(G) \log (W(G))-\sum_{i=1}^{\rho(G)} i k_{i} \log (i) \tag{41}\\
I_{D}^{E}(G) & :=-\sum_{i=0}^{\rho(G)} \frac{2 k_{i}}{N(N-1)} \log \frac{2 k_{i}}{N(N-1)} \tag{42}
\end{align*}
$$

$\rho(G)$ is the diameter of the graph (the maximum distance between two nodes). k_{i} is the occurrence of a distance possessing value i in the distance matrix of G.

```
> #I_D(G)
> bonchev1 (g)
```

[1] 1.173795
> bonchev1 (g, mat.dist)
[1] 1.173795
> \#I^W_D(G)
> bonchev2 (g)
[1] 167.4578
> bonchev2(g, mat.dist)
[1] 167.4578
> bonchev2(g, mat.dist, wiener(g))
[1] 167.4578
> \#I^E_D(G)
> bonchev3(g)
[1] 1.263809
> bonchev3(g, mat.dist)
[1] 1.263809

Bertz Complexity Index [20]:

$$
\begin{equation*}
C(G):=2 N \log (N)-\sum_{i=1}^{k}\left|N_{i}\right| \log \left(\left|N_{i}\right|\right) . \tag{43}
\end{equation*}
$$

$\left|N_{i}\right|$ are the cardinalities of the vertex orbits as defined in Eqn. (39).
bertz (g)
[1] 42
> bertz(g, mat.dist)
[1] 42
bertz(g, mat.dist, vec.degree)
[1] 42

Radial Centric Information Index [21]:

$$
\begin{equation*}
I_{C, R}(G):=\sum_{i=1}^{k} \frac{\left|N_{i}^{e}\right|}{N} \log \left(\frac{\left|N_{i}^{e}\right|}{N}\right) \tag{44}
\end{equation*}
$$

$\left|N_{i}^{e}\right|$ is the number of vertices having the same eccentricity.
> radialCentric (g)
[1] 0.954434
> radialCentric(g, mat.dist)
[1] 0.954434

Vertex Degree Equality-based Information Index [21]:

$$
\begin{equation*}
I_{\text {deg }}(G):=\sum_{i=1}^{\bar{k}} \frac{\left|N_{i}^{k_{v}}\right|}{N} \log \left(\frac{\left|N_{i}^{k_{v}}\right|}{N}\right) . \tag{45}
\end{equation*}
$$

$\left|N_{i}^{k_{v}}\right|$ is the number of vertices with degree equal to i and $\bar{k}:=\max _{v \in N(G)} k_{v}$.
> vertexDegree (g)
[1] 2.25
> vertexDegree(g, vec.degree)
[1] 2.25

Balaban-like Information Indices [22]:
Note that this class of Descriptors return Inf for graphs with $N<3$.

$$
\begin{align*}
U(G) & :=\frac{|E|}{\mu+1} \sum_{\left(v_{i}, v_{j}\right) \in E}\left[u\left(v_{i}\right) u\left(v_{j}\right)\right]^{-\frac{1}{2}}, \tag{46}\\
X(G) & :=\frac{|E|}{\mu+1} \sum_{\left(v_{i}, v_{j}\right) \in E}\left[x\left(v_{i}\right) x\left(v_{j}\right)\right]^{-\frac{1}{2}}, \tag{47}
\end{align*}
$$

where

$$
\begin{align*}
u\left(v_{i}\right) & :=-\sum_{j=1}^{\sigma\left(v_{i}\right)} \frac{j\left|S_{j}\left(v_{i}, G\right)\right|}{\mu\left(v_{i}\right)} \log \left(\frac{j}{\mu\left(v_{i}\right)}\right), \tag{48}\\
x\left(v_{i}\right) & :=-\mu\left(v_{i}\right) \log \left(d\left(v_{i}\right)\right)-y_{i}, \tag{49}\\
y_{i} & :=\sum_{j=1}^{\sigma\left(v_{i}\right)} j\left|S_{j}\left(v_{i}, G\right)\right| \log (j), \tag{50}\\
\mu\left(v_{i}\right) & :=\sum_{j=1}^{N} d\left(v_{i}, v_{j}\right)=\sum_{j=1}^{N} j\left|S_{j}\left(v_{i}, G\right)\right| . \tag{51}
\end{align*}
$$

> \#Balaban-like information index $U(G)$
> balabanlike1 (g)
[1] 9.386872
> balabanlike1(g, mat.dist)
[1] 9.386872
> \#Balaban-like information index X(G)
> balabanlike2(g)
[1] 1.005222
> balabanlike2(g, mat.dist)
[1] 1.005222

Graph Vertex Complexity Index [23]:

$$
\begin{equation*}
I_{V C}^{v}(G):=\frac{1}{N} \sum_{i=1}^{N} v_{i}^{c} \tag{52}
\end{equation*}
$$

where v_{i}^{c} is the so-called vertex complexity expressed by

$$
\begin{equation*}
v_{i}^{c}:=-\sum_{j=0}^{\sigma\left(v_{i}\right)} \frac{k_{j}^{v_{i}}}{N} \log \left(\frac{k_{j}^{v_{i}}}{N}\right) . \tag{53}
\end{equation*}
$$

$k_{k}^{v_{i}}$ is the number of distances starting from $V_{i} \in N(G)$ equal to j.
> graphVertexComplexity (g)
[1] 1.450648
> graphVertexComplexity(g, mat.dist)
[1] 1.450648

Graph distance complexity [23]:

$$
\begin{equation*}
I_{V C}(G)=\frac{1}{N} \sum_{i=1}^{N} I_{D C, \delta_{D}}\left(v_{i}\right), \tag{54}
\end{equation*}
$$

$I_{D C, \delta_{D}}$ being is the local invariant

$$
\begin{equation*}
I_{D C, \delta_{D}}\left(v_{i}\right)=-\sum_{j=1}^{\operatorname{ecc}\left(v_{i}\right)} a_{j}^{i} \cdot \frac{j}{\delta_{D}\left(v_{i}\right)} \log \frac{j}{\delta_{D}\left(v_{i}\right)}, \tag{55}
\end{equation*}
$$

where $\operatorname{ecc}\left(v_{i}\right)$ denotes the eccentricity of the vertex v_{i}, a_{j}^{i} is the number of vertices in its j-sphere, and $\delta_{D}\left(v_{i}\right)$ is its distance degree.
> graphDistanceComplexity(g)
[1] 2.723294
> graphDistanceComplexity(g, mat.dist)
[1] 2.723294

Information Bond Index [24]:

$$
\begin{equation*}
I_{B}:=|E| \cdot \log _{2}|E|-\sum_{m}\left|E_{m}\right| \cdot \log _{2}\left|E_{m}\right|, \tag{56}
\end{equation*}
$$

where E_{m} is the subset of E of edges with a multiplicity of m. The sum runs over all the different edge multiplicities in the graph.

This descriptor expects the conventional bond order in the "bond" edge data attribute of the input graph.

```
> informationBondIndex(g)
```

[1] 5.396641

Mean Information Content on the Edge Equality [25]:

$$
\begin{equation*}
{ }^{E} \bar{I}_{\chi}^{E}=-\sum_{g} \frac{\left|E_{g}\right|}{|E|} \cdot \log _{2} \frac{\left|E_{g}\right|}{|E|}, \tag{57}
\end{equation*}
$$

where E_{g} is the subset of E of edges with an edge connectivity of g. The sum runs over all the different connectivity values of the edges in the graph.

```
> edgeEqualityMIC(g)
```

[1] 2.75
> edgeEqualityMIC(g, vec.degree)
[1] 2.75

Mean Information Content on the Edge Magnitude [25]:

$$
\begin{equation*}
E \bar{I}_{\chi}^{M}=-\sum_{(i, j) \in E} \frac{\left(k_{i} k_{j}\right)^{-1 / 2}}{R(G)} \cdot \log _{2} \frac{\left(k_{i} k_{j}\right)^{-1 / 2}}{R(G)} \tag{58}
\end{equation*}
$$

where $R(G)$ is the Randić connectivity index and k_{i} are the vertex degrees.
> edgeMagnitudeMIC(g)
[1] 3.951387
> edgeMagnitudeMIC(g, vec.degree)
[1] 3.951387

Symmetry Index [26]:

$$
\begin{equation*}
S(G):=\frac{1}{N} \sum_{i=1}^{h}\left|A_{i}\right| \log \left|A_{i}\right|+\log |\operatorname{Aut}(G)| \tag{59}
\end{equation*}
$$

where $\operatorname{Aut}(G)$ is the automorphism group with h orbits $A_{i}, 1 \leq i \leq h$.
> symmetryIndex (g)
[1] 3.75

Mean Information Content of Distance Degrees [6]:

$$
\begin{equation*}
I_{\delta_{D}}(G):=-\sum_{i=1}^{N} \frac{\delta_{D}\left(v_{i}\right)}{2 W} \log \frac{\delta_{D}\left(v_{i}\right)}{2 W} \tag{60}
\end{equation*}
$$

where $\delta_{D}\left(v_{i}\right)$ is the distance degree of the i th vertex and W is the Wiener index.
> distanceDegreeMIC(g)
[1] 2.968385
> distanceDegreeMIC(g, mat.dist)
[1] 2.968385

Mean Information Content of Distance-Degree Equality [21]:

$$
\begin{equation*}
I_{D, \delta_{D}}(G)=-\sum_{i=1}^{k} \frac{\left|N_{i}\right|}{N} \log \frac{\left|N_{i}\right|}{N} \tag{61}
\end{equation*}
$$

where $N_{1}, N_{2}, \ldots, N_{k}$ is the vertex partition of $N(G)$ such that each N_{i} contains vertices having the same distance degree δ_{D}.
> distanceDegreeEquality(g)
[1] 2.25
> distanceDegreeEquality(g, mat.dist)
[1] 2.25

Compactness Measure Based on Distance Degrees [27]:

$$
\begin{equation*}
I_{C, \delta_{D}}(G)=2 W \log (2 W)-\sum_{k} q_{k} \log q_{k} \tag{62}
\end{equation*}
$$

where W is the Wiener index and q_{k} is the sum of the distance degrees of all vertices located at a topological distance of k from the center of the graph.

```
> distanceDegreeCompactness(g)
```

[1] 116.5763
> distanceDegreeCompactness(g, mat.dist)
[1] 116.5763

Information Layer Index [28]:

$$
\begin{equation*}
I_{S p}=-\sum_{i=1}^{N} \sum_{j=1}^{\operatorname{ecc}\left(v_{i}\right)} \frac{a_{j}^{i}}{N} \log \frac{a_{j}^{i}}{N}, \tag{63}
\end{equation*}
$$

where $\operatorname{ecc}\left(v_{i}\right)$ denotes the eccentricity of the vertex v_{i} and a_{j}^{i} is the number of vertices in its j-sphere.
> informationLayerIndex (g)
[1] 8.605186
> informationLayerIndex (g, mat.dist)
[1] 8.605186

3.4 More Recent Graph Complexity Measures

This group contains miscellaneous descriptors which have been discovered quite recently.

Medium Articulation [29]:

$$
\begin{equation*}
M A g(G):=M A_{R}(G) \cdot M A_{I}(G) \tag{64}
\end{equation*}
$$

with the redundancy

$$
\begin{align*}
M A_{R}(G) & :=4\left(\frac{R(G)-R_{\mathrm{path}}(G)}{R_{\text {clique }}(G)-R_{\mathrm{path}}(G)}\right)\left(1-\frac{R(G)-R_{\mathrm{path}}(G)}{R_{\text {clique }}(G)-R_{\mathrm{path}}(G)}\right) \tag{65}\\
R(G) & :=\frac{1}{|E|} \sum_{i, j>i} \log \left(d_{i} d_{j}\right) \tag{66}\\
R_{\text {clique }}(G) & =2 \log (N-1) \tag{67}\\
R_{\text {path }}(G) & =2 \frac{N-2}{N-1} \log 2 \tag{68}
\end{align*}
$$

and the mutual information

$$
\begin{align*}
M A_{I}(G) & :=4\left(\frac{I(G)-I_{\text {clique }}(G)}{I_{\text {path }}(G)-I_{\text {clique }}(G)}\right)\left(1-\frac{I(G)-I_{\text {clique }}(G)}{I_{\text {path }}(G)-I_{\text {clique }}(G)}\right) \tag{69}\\
I(G) & :=\frac{1}{|E|} \sum_{i, j>i} \log \left(\frac{2|E|}{d_{i} d_{j}}\right) \tag{70}\\
I_{\text {clique }}(G) & =\log \frac{N}{N-1} \tag{71}\\
I_{\text {path }}(G) & =\log (N-1)-\frac{N-3}{N-1} \log 2 \tag{72}
\end{align*}
$$

> mediumArticulation(g)
[1] 0.7451725

Efficiency Complexity [29]:

> efficiency(g)
[1] 0.9875552
> efficiency(g, mat.dist)
[1] 0.9875552
where

$$
c_{r}:=\frac{r-2 \cos \frac{\pi}{N+1}}{N-1-2 \cos \frac{\pi}{N+1}}
$$

and r is the largest eigenvalue of the adjacency matrix of the graph.
> graphIndexComplexity (g)
[1] 0.9981257

Offdiagonal Complexity [29]:

$$
\begin{aligned}
\mathrm{Ce}(\mathrm{G}) & :=4\left(\frac{E(G)-E_{\mathrm{path}}(G)}{1-E_{\mathrm{path}}(G)}\right)\left(1-\frac{E(G)-E_{\mathrm{path}}(G)}{1-E_{\mathrm{path}}(G)}\right) \\
E(G) & :=\frac{2}{N(N-1)} \sum_{i} \sum_{j>i} \frac{1}{d_{i j}} \\
E_{\mathrm{path}}(G) & =\frac{2}{N(N-1)} \sum_{i=1} N-1 \frac{N-i}{i}
\end{aligned}
$$

Graph Index Complexity [29]:

$$
C r(G):=4 c_{r}\left(1-c_{r}\right)
$$

$O d C(G):=-\frac{1}{\log (N-1)} \sum_{n=0}^{k_{\max }-1} \tilde{a}_{n} \log \tilde{a}_{n}$,
with

$$
\begin{align*}
& \tilde{a}_{n}:=\frac{a_{n}}{\sum_{m=0}^{k_{\max }-1} a_{m}}, \tag{78}\\
& a_{n}:=\sum_{i=1}^{k_{\max -N}} c_{i, i+N}, \tag{79}
\end{align*}
$$

where $k_{\max }$ is the maximum degree of all nodes in the graph, and $c_{i j}$ is the number of all neighbors with degree $j \geq i$ of all nodes with degree i.
> offdiagonal (g)
[1] 0.7724231
> offdiagonal(g, vec.degree)
[1] 0.7724231

Spanning Tree Sensitivity [29]:

with $m_{c u}=N^{1.68}-10$,

$$
\begin{align*}
a_{l} & :=\frac{S_{i j}^{l}}{\sum_{r}^{k} S_{i j}^{r}}, \tag{81}\\
S_{i j} & :=s_{i j}-\left(\min \left\{s_{i j}\right\}-1\right), \tag{82}
\end{align*}
$$

$\left\{S_{i j}^{1}, S_{i j}^{2}, \ldots, S_{i j}^{k}\right\}$ being an ordered list of all k different $S_{i j} . s_{i j}$ is the number of spanning trees in the graph minus the number of spanning trees of the subgraph with the edge $\left\{v_{i}, v_{j}\right\}$ deleted. Analogously, the spanning tree sensitivity differences measure is defined as

$$
\begin{equation*}
S T S D(G):=\frac{-\sum_{l} b_{l} \log b_{l}}{\log m_{c u}} \tag{83}
\end{equation*}
$$

with

$$
b_{l}=\frac{L d_{l}}{\sum_{r}^{d} L d_{r}}
$$

, where $\left\{L d_{1}, L d_{2}, \ldots, L d_{d}\right\}$ is the ordered list of all unique differences $S_{i j}^{m}-S_{i j}^{m-1}$.

```
> spanningTreeSensitivity(g)
```

\$STS
[1] 0.5573997
\$STSD
[1] 0.3209068

```
> spanningTreeSensitivity(g, sg.1ed)
```

\$STS
[1] 0.5573997
\$STSD
[1] 0.3209068

Distance Degree/Code Centric Indices [30]:

$$
\begin{gather*}
I_{\mathrm{C}, \operatorname{deg}}(G):=-\sum_{i=1}^{D} \frac{d_{i}}{N} \log _{2} \frac{d_{i}}{N}, \tag{84}\\
I_{\mathrm{C}, \text { code }}(G):=-\sum_{i=1}^{C} \frac{c_{i}}{N} \log _{2} \frac{c_{i}}{N} \tag{85}
\end{gather*}
$$

where d_{i} is the number of vertices with the same eccentricity and the same vertex distance degree (i. e., equal row sums in the distance matrix), and c_{i} is the number of vertices with the same vertex distance code (i.e., the same numbers in their rows in the distance matrix). D and C are the respective numbers of equivalence classes.
> distanceDegreeCentric (g)
[1] 2.25
> distanceDegreeCentric(g, mat.dist)
[1] 2.25
> distanceCodeCentric(g)
[1] 2.25
> distanceCodeCentric(g, mat.dist)
[1] 2.25

3.5 Parametric Graph Entropy Measures

Measures of this group [31, 32] assign a probability value to each vertex of the network using a so-called information functional f which captures structural information of the network G.

$$
\begin{equation*}
I_{f}(G):=-\sum_{i=1}^{N} \frac{f\left(v_{i}\right)}{\sum_{j=1}^{N} f\left(v_{j}\right)} \log \left(\frac{f\left(v_{i}\right)}{\sum_{j=1}^{N} f\left(v_{j}\right)}\right) \tag{86}
\end{equation*}
$$

where $I_{f}(G)$ represents a family of graph entropy 31 measures depending on the information functional. Further we implemented the following measurement 32]:

$$
\begin{gather*}
I_{f}^{\lambda}(G):=\lambda\left(\log (N)+\sum_{i=1}^{N} p\left(v_{i}\right) \log \left(p\left(v_{i}\right)\right)\right), \tag{87}\\
p\left(v_{i}\right):=\frac{f\left(v_{i}\right)}{\sum_{j=1}^{N} f\left(v_{j}\right)}, \tag{88}
\end{gather*}
$$

where $p^{V}\left(v_{i}\right)$ are the vertex probabilities, and $\lambda>0$ is a scaling constant. This measure can be interpreted as the distance between the entropy defined in equation 86 and maximum entropy $(\log (N))$. We integrated 4 different information functionals 31, 33:

1. An information functional using the j-spheres ("sphere"):

$$
\begin{equation*}
f^{V}\left(v_{i}\right):=c_{1}\left|S_{1}\left(v_{i}, G\right)\right|+c_{2}\left|S_{2}\left(v_{i}, G\right)\right|+\cdots+c_{\rho(G)}\left|S_{\rho(G)}\left(v_{i}, G\right)\right|, \tag{89}
\end{equation*}
$$

where $c_{k}>0$.
2. An information functional using path lengths ("pathlength"):

$$
\begin{equation*}
f^{P}\left(v_{i}\right):=c_{1} l\left(P\left(L_{G}\left(v_{i}, 1\right)\right)\right)+c_{2} l\left(P\left(L_{G}\left(v_{i}, 2\right)\right)\right)+\cdots+c_{\rho(G)} l\left(P\left(L_{G}\left(v_{i}, \rho(G)\right)\right)\right), \tag{90}
\end{equation*}
$$

where $c_{k}>0$.
3. An information functional using vertex centrality("vertcent") :

$$
\begin{equation*}
f^{C}\left(v_{i}\right):=c_{1} \beta^{L_{G}\left(v_{i}, 1\right)}\left(v_{i}\right)+c_{2} \beta^{L_{G}\left(v_{i}, 2\right)}\left(v_{i}\right)+\cdots+c_{\rho(G)} \beta^{L_{G}\left(v_{i}, \rho(G)\right)}\left(v_{i}\right), \tag{91}
\end{equation*}
$$

where $c_{k}>0$.
4. Calculates the degree-degree association index ("degree") 33:

$$
\begin{equation*}
f^{\Delta}\left(v_{i}\right):=\alpha^{c_{1} \Delta^{G}\left(v_{i}, 1\right)+c_{2} \Delta^{G}\left(v_{i}, 2\right)+\cdots+c_{\rho(G)} \Delta^{G}\left(v_{i}, \rho(G)\right)}, \tag{92}
\end{equation*}
$$

where $c_{k}>0,1 \leq k \leq \rho(G)$ and $\alpha>0$. Note that f^{Δ} is well-defined for $\alpha>0$. Please consider that the results of the degree-degree association index are often very close to zero and can only be represented with a special data type (see the hint at the end of this section).

We implemented 4 different settings (as example settings) for weighting the parameters $c_{i}(\rho(G)$ represents the diameter of the network):

1. constant

$$
\begin{equation*}
c_{1}:=1, c_{2}:=1, \cdots, c_{\rho(G)}:=1 . \tag{93}
\end{equation*}
$$

2. linear

$$
\begin{equation*}
c_{1}:=\rho(G), c_{2}:=\rho(G)-1, \cdots, c_{\rho(G)}:=1 \tag{94}
\end{equation*}
$$

3. quadratic

$$
\begin{equation*}
c_{1}:=\rho(G)^{2}, c_{2}:=(\rho(G)-1)^{2}, \cdots, c_{\rho(G)}:=1 \tag{95}
\end{equation*}
$$

4. exponential

$$
\begin{equation*}
c_{1}:=\rho(G), c_{2}:=\rho(G) e^{1}, \cdots, c_{\rho(G)}:=\rho(G) e^{-\rho(G)+1} . \tag{96}
\end{equation*}
$$

When using the calculateDescriptors method, the first (odd) numbers listed in the margin will use exponential weighting while the second (even) numbers use linear.

To call this type of network measure we provide the method infoTheoretic $G C M$. It has following input parameters:

- g : the network as a graphNEL object - it is the only mandatory parameter
- dist: the distance matrix of g
- coeff: specifies the weighting parameter: "const", "lin", "quad", "exp", "const" or "cust" are available constants. If it is set to "cust", a customized weighting schema has to be specified through the custCoeff parameter.
- infofunct: specifies the information functional: "sphere", "pathlength", "vertcent" or "degree" are available settings.
- lambda: scaling constant for the distance, default set to 1000 .
- custCoeff: specifies the customized weighting schema. coeff must be set to "const" in order to use it.
- alpha: alpha for degree degree association.
- prec: specifies the floating-point precision to use (currently only implemented for degree-degree association). Values up to 53 are handled with the built-in double data type; larger values trigger the usage of Rmpfr.

Note that some combinations of these settings can cause the descriptor to return $N a N$. In that case it is the user's responsibility to check for warnings. For infofunct="degree" in particular, also see the note below.

The method returns a list with following entries:

- entropy: contains the entropy, see formula 86
- distance: contains the distance described in formula 87
- pis: contains the probability distribution, see formula 88
- fvi: contains the values of the used information functional for each vertex v_{i}

```
> l1 <- infoTheoreticGCM(g)
> 12 <- infoTheoreticGCM(g, mat.dist, coeff="lin", infofunct="sphere", lambda=1000)
> 13 <- infoTheoreticGCM(g, mat.dist, coeff="const", infofunct="pathlength", lambda=4000)
> l4 <- infoTheoreticGCM(g, mat.dist, coeff="quad", infofunct="vertcent", lambda=1000)
> 15 <- infoTheoreticGCM(g, mat.dist, coeff="exp", infofunct="degree", lambda=1000)
> l1
$entropy
[1] 2.987778
$distance
[1] 12.22243
$pis
\begin{tabular}{rrrrrr}
1 & 2 & 3 & 4 & 5 & 6 \\
\hline 0.14285714 & 0.12857143 & 0.12857143 & 0.14285714 & 0.13571429 & 0.09285714 \\
8 & & 0.11428571
\end{tabular}
$fvis
    1
20 18 18 20 19 13 16 16
> 15
```


\$entropy

[1] 1.546569
\$distance
[1] 1453.431
\$pis

1	2	3	4	5	6
$4.474312 \mathrm{e}-01$	$2.658896 \mathrm{e}-02$	$2.658896 \mathrm{e}-02$	$4.474312 \mathrm{e}-01$	$5.075579 \mathrm{e}-02$	$1.196450 \mathrm{e}-03$
7	8				

\$fvis

1	2	3	4	5	6
$2.540206 \mathrm{e}-12$	$1.509538 \mathrm{e}-13$	$1.509538 \mathrm{e}-13$	$2.540206 \mathrm{e}-12$	$2.881564 \mathrm{e}-13$	$6.792618 \mathrm{e}-15$
7	8				
$2.106446 \mathrm{e}-17$	$2.106446 \mathrm{e}-17$				

Important: Note, the functional based on degree-degree associations (infofunct="degree") can result in values that cannot be represented by standard data types. This problem manifests itself in $N a N$ as return values. Note, that this issue can be avoided by specifying a floating-point precision value greater than 53 , using the parameter prec (e.g. prec=128 is usually enough). In this case, the Rmpfr package will be used and the list, returned by the function will contain vectors of the class mpfr. These vectors can be used as usual numeric vectors, except that all calculations will result in mpfr vectors. Note, that as.double can be used to convert such a vector back to the regular numeric vector once the result is in the representable range (between 10^{-380} and 10^{380}). The following example shows how to work with vectors of type mpfr:

```
> l5mpfr <- infoTheoreticGCM(g, mat.dist, coeff="exp", infofunct="degree", lambda=1000, prec=128)
> l5mpfr$entropy
1 'mpfr' number of precision 128 bits
[1] 1.546568792292280720674101903940257498633
> l5mpfr$entropy * 2^3
1 'mpfr' number of precision 128 bits
[1] 12.37255033833824576539281523152205998907
> as.double(l5mpfr$entropy * 2^3)
[1] 12.37255
```

For more details about mpfr vectors, please consult the Rmpfr documentation.

Parametric Entropy Measures for Labeled Graphs [34]:

These three functionals are similar to the ones above, but additionally use vertex or edge labels in order to distinguish between different bond types and heteroatoms. For practical reasons, they are not implemented as part of infoTheoretic $G C M$.
$f^{V_{1}}$ and $f^{V_{2}}$ require the atomic number or chemical symbol in the "atom" vertex data attribute. f^{E} needs the conventional bond order in the "bond" vertex attribute.

The functionals are defined as

$$
\begin{align*}
f^{V_{1}}\left(v_{i}\right) & :=\sum_{k=1}^{\rho(G)} \sum_{\mu=1}^{\left|A^{G}\right|} c_{k}^{u^{u}}\left|S_{k}^{\mu_{v}^{u}}\left(v_{i}, G\right)\right|, \tag{97}\\
f^{V_{2}}\left(v_{i}\right) & :=\sum_{\mu=1}^{\left|A_{V}^{G}\right|}\left(c_{l v}^{\mu} \cdot \sum_{k=1}^{\rho(G)}\left|V_{l_{v}^{u}}\left(\mathcal{L}_{G}\left(v_{i}, k\right)\right)\right|\right), \tag{98}\\
f^{E}\left(v_{i}\right) & :=\sum_{k=1}^{\rho(G)} c_{k} \cdot \omega\left(\mathcal{L}_{G}\left(v_{i}, k\right)\right) . \tag{99}
\end{align*}
$$

$S_{j}^{l_{v}^{\mu}}$ is the set of vertices on the j-sphere of v_{i} with the node label l_{v}^{μ}. $\left|A_{V}^{G}\right|$ is the number of distinct node labels. $\mathcal{L}_{G}\left(v_{i}, j\right)$ is called a local information graph regarding v_{i}. Its vertex set consists of the vertices on the j-sphere of v_{i} and all vertices along all the shortest paths from v_{i} to these vertices. Its edge set contains all edges that make up these shortest paths. $\omega\left(\mathcal{L}_{G}\left(v_{i}, j\right)\right)$ is defined as

$$
\begin{align*}
\omega\left(\mathcal{L}_{G}\left(v_{i}, j\right)\right) & :=\sum_{\mu=1}^{k_{j}} \omega\left(P_{\mu}^{j}\left(v_{i}\right)\right) \tag{100}\\
\omega\left(P_{\mu}^{j}\left(v_{i}\right)\right) & :=\omega\left(e_{1}^{\mu}\right)+\cdots+\omega\left(e_{j}^{\mu}\right) \tag{101}
\end{align*}
$$

k_{j} being the number of shortest paths of length j from v_{i}, and $\omega\left(e_{i}^{\mu}\right)$ the conventional bond order of the i th edge along the path P_{μ}^{j}.

The c values are understood as follows:

- $f^{V_{1}}\left(v_{i}\right): c_{j}^{l_{v}^{\mu}}$ is the weighting coefficient for vertices on the j-sphere of v_{i} whose label is l_{v}^{μ}. It can be defined by passing as the coeffMatrix parameter to infoTheoreticLabeledV1 a matrix whose columns represent the elements and whose rows the values of j; the columns have to be named according to the chemical symbols. The matrix chosen by default represents $c_{j}^{a}=c_{j}-m_{a} / 238$, where m_{a} is the atomic mass of the atom a. Values for c_{j} can be selected using coeff and custCoeff as described above; the default is "lin". Again, the first listed descriptor numbers for calculateDescriptors use exponentially growing weighting coefficients whereas the second numbers use linear.
- $f^{V_{2}}\left(v_{i}\right): c_{l_{v}^{\mu}}$ is the weighting coefficient for vertices whose label is l_{v}^{μ}. Different values can be chosen by passing a list in the ci parameter to infoTheoreticLabeledV2 which maps chemical symbols to coefficients. By default, all $c_{l_{v}^{\mu}}$ are 1 .
- $f^{E}\left(v_{i}\right): c_{k}$ is the weighting coefficient for paths of length k. The coefficient values can be set using the coeff / custCoeff mechanism described above; "lin" is selected by default.

For all functions, lambda can be used to set a scaling constant different from the default 1000.

```
> lv1 <- infoTheoreticLabeledV1(g, coeff="exp")
> lv1$entropy
```

[1] 2.957048

```
> lv2 <- infoTheoreticLabeledV2(g, ci=list(`C` = 0.8, `O` = 1))
> lv2$entropy
```

[1] 2.982281

```
> le <- infoTheoreticLabeledE(g, coeff="quad")
> le$entropy
```


[1] 2.981284

[34] also defines functionals $f^{V_{1}, E}$ and $f^{V_{2}, E}$ as the sum of a vertex- and an edge-labeled-based functional. Given the result of infoTheoreticLabeledE and one of infoTheoreticLabeledV1 or infoTheoreticLabeledV2, the infoTheoreticSum method can be used to calculate these sums correctly.

```
> lv1e <- infoTheoreticSum(lv1, le)
> lv1e$entropy
```

[1] 2.984874

```
> lv2e <- infoTheoreticSum(lv2, le)
> lv2e$entropy
```

[1] 2.984652

3.6 Eigenvalue-based Descriptors

This class contains eigenvalue-based Descriptors proposed in Dehmer et. al 33.

$$
\begin{gather*}
H_{M_{s}}(G)=\sum_{i=1}^{k} \frac{\left|\lambda_{i}\right|^{\frac{1}{s}}}{\sum_{j=1}^{k}\left|\lambda_{j}\right|^{\frac{1}{s}}} \log \left(\frac{\left|\lambda_{i}\right|^{\frac{1}{s}}}{\sum_{j=1}^{k}\left|\lambda_{j}\right|^{\frac{1}{s}}}\right), \tag{102}\\
S_{M_{s}}(G)=\left|\lambda_{1}\right|^{\frac{1}{s}}+\left|\lambda_{2}\right|^{\frac{1}{s}}+\ldots+\left|\lambda_{k}\right|^{\frac{1}{s}}, \tag{103}\\
I S_{M_{s}}(G)=\frac{1}{\left|\lambda_{1}\right|^{\frac{1}{s}}+\left|\lambda_{2}\right|^{\frac{1}{s}}+\ldots+\left|\lambda_{k}\right|^{\frac{1}{s}}}, \tag{104}\\
P_{M_{s}}(G)=\left|\lambda_{1}\right|^{\frac{1}{s}} \cdot\left|\lambda_{2}\right|^{\frac{1}{s}} \ldots\left|\lambda_{k}\right|^{\frac{1}{s}}, \tag{105}\\
I P_{M_{s}}(G)=\frac{1}{\left|\lambda_{1}\right|^{\frac{1}{s}} \cdot\left|\lambda_{2}\right|^{\frac{1}{s}} \ldots\left|\lambda_{k}\right|^{\frac{1}{s}}}, \tag{106}
\end{gather*}
$$

Using this function, it is possible to calculate 5 descriptors $\left(H_{M_{s}(G)}, S_{M_{s}(G)}, I S_{M_{s}(G)}, P_{M_{s}(G)}, I P_{M_{s}(G)}\right)$ for 10 different matrices:

1. Adjacency matrix
> eigenvalueBased(g, adjacencyMatrix,2)
\$HMs
[1] 2.917793
\$SMs
[1] 9.559839
\$ISMs
[1] 0.1046043
\$PMs
[1] 2.645751
\$IPMs
[1] 0.3779645
2. Laplacian matrix
> eigenvalueBased(g, laplaceMatrix,2)
\$HMs
[1] 2.740343
\$SMs
[1] 14.3795
\$ISMs
[1] 0.06954342
\$PMs
[1] $2.758631 \mathrm{e}-06$
\$IPMs
[1] 362498.7
3. Distance matrix
```
> eigenvalueBased(g, distanceMatrix,2)
```


\$HMs

[1] 2.786483
\$SMs
[1] 11.41388
\$ISMs
[1] 0.08761264
\$PMs
[1] 5.567764
\$IPMs
[1] 0.1796053
4. Distance path Matrix

```
> eigenvalueBased(g,distancePathMatrix,2)
```

\$HMs
[1] 2.642342
\$SMs
[1] 12.97184
\$ISMs
[1] 0.07709008
\$PMs
[1] 5.385165
\$IPMs
[1] 0.1856953
5. Augmented vertex degree matrix
> eigenvalueBased(g, augmentedMatrix,2)
\$HMs
[1] 2.824489
\$SMs
[1] 14.06616
\$ISMs
[1] 0.07109262
\$PMs
[1] 37.98437
\$IPMs
[1] 0.02632662
6. Extended adjacency matrix

```
> eigenvalueBased(g, extendedAdjacencyMatrix,2)
```

\$HMs
[1] 2.926072

\$SMs

[1] 10.9429
\$ISMs
[1] 0.09138349
\$PMs
[1] 8.199051
\$IPMs
[1] 0.1219653

6013,
7. Vertex Connectivity matrix

```
> eigenvalueBased(g, vertConnectMatrix,2)
```

\$HMs
[1] 2.942791
\$SMs
[1] 4.976892
\$ISMs
[1] 0.2009286
\$PMs
[1] 0.01643355
\$IPMs
[1] 60.85111
8. Random Walk Markov matrix
> eigenvalueBased(g, randomWalkMatrix, 2)
\$HMs
[1] 2.942791
\$SMs
[1] 4.976892
\$ISMs
[1] 0.2009286
\$PMs
[1] 0.01643355
\$IPMs
[1] 60.85111
9. Weighted structure function matrix $I M_{1}$
> eigenvalueBased(g, weightStrucFuncMatrix_lin,2)
\$HMs
[1] 0.8761934
\$SMs
[1] 3.3004
\$ISMs
[1] 0.3029936
\$PMs
[1] $2.056074 \mathrm{e}-35$
\$IPMs
[1] $4.863638 \mathrm{e}+34$
10. Weighted structure function matrix $I M_{2}$

```
> eigenvalueBased(g, weightStrucFuncMatrix_exp,2)
$HMs
[1] 1.054334
$SMs
[1] 3.46231
$ISMs
[1] 0.2888245
$PMs
[1] 9.854947e-35
$IPMs
[1] 1.014719e+34
```

For a detailed description of this class see Dehmer et. al 33.
When using calculateDescriptors with the numbers in the margin, note that the odd ones set $s=1$ by default (but allows it to be changed through an optional parameter) while the even numbers fix $s=2$.

Graph Energy and Laplacian Energy [35]:

where λ_{k} are the eigenvalues of the adjacency matrix and μ_{k} those of the Laplacian matrix of the graph.
> energy (g)
[1] 12.81116
> laplacianEnergy(g)
[1] 17.86179

Estrada [36] and Laplacian Estrada [37] Indices:

$$
\begin{align*}
E E(G) & :=\sum_{i=1}^{N} e^{\lambda_{i}} \tag{109}\\
L E E(G) & :=\sum_{i=1}^{N} e^{\mu_{i}} \tag{110}
\end{align*}
$$

with λ_{k} and μ_{k} defined as above.

```
> estrada(g)
```

[1] 102.0425
laplacianEstrada(g)
[1] 2877.584

Spectral Radius:

$$
\begin{equation*}
\operatorname{SpRad}(G):=\max _{i}\left\{\left|\lambda_{i}\right|\right\} \tag{111}
\end{equation*}
$$

> spectralRadius(g)
[1] 4.550538

3.7 Subgraph Measures

These descriptors are based on the number and properties of certain subgraphs that can be derived for a given network.

One-edge-deleted Subgraph Complexity [29]:

$$
\begin{align*}
C_{1 e, S T}(G) & :=\frac{N_{1 e, S T}-1}{m_{c u}-1} \tag{112}\\
C_{1 e, S p e c}(G) & :=\frac{N_{1 e, S p e c}-1}{m_{c u}-1} \tag{113}
\end{align*}
$$

$N_{1 e, S T}$ is the number of one-edge-deleted subgraphs which are different with regard to the number of spanning trees. Similarly, $N_{1 e, S p e c}$ is the number of one-edge-deleted subgraphs which are different with regard to spectra of the Laplacian and signless Laplacian matrix. $m_{c u}$ is defined as $N^{1.68}-10$.

```
> oneEdgeDeletedSubgraphComplexity(g)
$C_1eST
[1] 0.3653028
$C_1eSpec
[1] 0.6849427
> oneEdgeDeletedSubgraphComplexity(g, sg.1ed)
$C_1eST
[1] 0.3653028
$C_1eSpec
[1] 0.6849427
```

Two-edges-deleted Subgraph Complexity [29]:

$$
\begin{equation*}
C_{2 e, S p e c}(G):=\frac{N_{2 e, S p e c}-1}{\binom{m_{c u}}{2}-1} \tag{114}
\end{equation*}
$$

where $m_{c u}$ is defined like above and $N_{2 e, S p e c}$ is the number of two-edges-deleted subgraphs which are different with regard to spectra of the Laplacian and signless Laplacian matrix.

```
> twoEdgesDeletedSubgraphComplexity(g)
```

[1] 0.4764822
> twoEdgesDeletedSubgraphComplexity(g, sg.2ed)
[1] 0.4764822

Local Clustering Coefficient [38, 39]:

Let $G_{N(v)}=\left(V_{N(v)}, E_{N(v)}\right)$ be the subgraph of G that contains all neighborhood vertices and their edges. Then the local clustering coefficient of a graph G is defined by

$$
\begin{equation*}
C_{v}(G):=\frac{E_{N(v)}}{\frac{V_{N(v)} *\left(V_{N(v)}-1\right)}{2}} \tag{115}
\end{equation*}
$$

> localClusteringCoeff(g)

```
1
0.6 1.0 1.0 0.6 0.6 0.0 1.0 1.0
> localClusteringCoeff(g, deg=vec.degree)
```

$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$
0.61 .01 .00 .60 .60 .01 .01 .0

Global Clustering Coefficient [38, 39]:

$$
\begin{equation*}
C(G):=\sum_{v \in N(g)}:=\frac{1}{N} \cdot C_{v} \tag{116}
\end{equation*}
$$

> loccc <- localClusteringCoeff(g)
> globalClusteringCoeff(g)
[1] 0.725
> globalClusteringCoeff(g, loc=loccc)
[1] 0.725

3.8 ID numbers

This group contains descriptors which are computed by adding up weights along certain paths in a graph.

Randić Connectivity ID Number 40]:

$$
\begin{equation*}
C I D:=N+\sum_{{ }^{m} p_{i j}} w_{i j} \tag{117}
\end{equation*}
$$

where ${ }^{m} p_{i j}$ are all paths of length $m>0$, and $w_{i j}$ is a path weight defined as

$$
\begin{equation*}
w_{i j}=\prod_{b=1}^{m}\left(k_{b(1)} k_{b(2)}\right)_{b}^{-1 / 2} \tag{118}
\end{equation*}
$$

with the sum running over all edges in the path and $k_{b(1)}, k_{b(2)}$ referring to the degrees of the two vertices incident to the b th edge.
> connectivityID(g)
[1] 17.53585
> connectivityID(g, deg=vec.degree)
[1] 17.53585

MINCID [41]:

$$
\begin{equation*}
M I N C I D:=N+\sum_{\min p_{i j}} w_{i j} \tag{119}
\end{equation*}
$$

where the sum runs over all shortest paths ${ }^{\min } p_{i j}$ between the vertices v_{i} and v_{j}, and $w_{i j}$ is taken from equation 118 .

```
> minConnectivityID(g)
```

[1] 12.76619
> minConnectivityID(g, deg=vec.degree)
[1] 12.76619

Prime ID Number 42]:

$$
\begin{equation*}
P I D:=N+\sum_{{ }^{m} p_{i j}} w_{i j}, \tag{120}
\end{equation*}
$$

with ${ }^{m} p_{i j}$ like above and the path weight $w_{i j}$

$$
\begin{equation*}
w_{i j}=\prod_{b=1}^{m} p n_{b}^{-1 / 2} \tag{121}
\end{equation*}
$$

where $p n_{b}$ is a prime number chosen according to the degrees of the vertices adjacent to the b th edge.
> primeID (g)
[1] 16.08181
> primeID(g, deg=vec.degree)
[1] 16.08181

Conventional Bond Order ID Number [43]:

$$
\begin{equation*}
\pi I D:=N+\sum_{{ }_{m} p_{i j}} w_{i j}, \tag{122}
\end{equation*}
$$

with ${ }^{m} p_{i j}$ like above and the path weight $w_{i j}$

$$
\begin{equation*}
w_{i j}=\prod_{b=1}^{m} \pi_{b}^{*} \tag{123}
\end{equation*}
$$

where π_{b}^{*} is the conventional bond order of the b th edge.
The conventional bond order must be set as the "bond" edge data attribute of the input graph.
> bondOrderID (g)
[1] 1719

Balaban ID Number [44]:

$$
\begin{equation*}
B I D:=N+\sum_{{ }^{m} p_{i j}} w_{i j}, \tag{124}
\end{equation*}
$$

with ${ }^{m} p_{i j}$ like above and the path weight $w_{i j}$

$$
\begin{equation*}
w_{i j}=\prod_{b=1}^{m}\left(\sigma_{b(1)} \cdot \sigma_{b(2)}\right)_{b}^{-1 / 2}, \tag{125}
\end{equation*}
$$

where σ_{k} is the vertex distance degree and $b(1), b(2)$ refer to the vertices adjacent to the edge b.
> balabanID (g)
[1] 10.62496
> balabanID(g, dist=mat.dist)
[1] 10.62496

MINBID [41]:

$$
\begin{equation*}
M I N B I D:=N+\sum_{\min p_{i j}} w_{i j}, \tag{126}
\end{equation*}
$$

where the sum runs over all shortest paths ${ }^{\min } p_{i j}$ between the vertices v_{i} and v_{j}, and $w_{i j}$ is taken from equation 125 .
> minBalabanID (g)
[1] 9.878353
> minBalabanID(g, dist=mat.dist)
[1] 9.878353

Weighted ID Number [45]:

$$
\begin{equation*}
W I D:=N-\frac{1}{N}+\frac{I D^{*}}{N^{2}} \tag{127}
\end{equation*}
$$

with

$$
\begin{align*}
I D^{*} & :=\sum_{i=1}^{N} \sum_{j=1}^{N} w_{i j}^{*}, \tag{128}\\
W^{*} & :=\sum_{k=0}^{N-1}{ }^{\sigma} \chi^{k}, \tag{129}
\end{align*}
$$

where ${ }^{\sigma} \chi$ is the distance-sum-connectivity matrix.
> weightedID(g)
\$WID
[1] 8.105633
\$SID
[1] 8.591112

Hu-Xu ID Number [46]:

$$
\begin{equation*}
H X I D:=\sum_{i=1}^{N} A I D_{i}^{2} \tag{130}
\end{equation*}
$$

with

$$
\begin{align*}
A I D_{i} & :=\sum_{j=1}^{N} w_{i j} \tag{131}\\
w_{i j} & :=\prod_{a=2}^{m+1}\left(\frac{\pi_{a-1, a}^{*}}{\cdot} \frac{1}{k_{a-1}^{\prime} \cdot k_{a}^{\prime}}\right)^{1 / 2} \tag{132}\\
k_{a}^{\prime} & :=k_{a} \cdot \sqrt{Z_{a}} \tag{133}
\end{align*}
$$

where Z_{a} is the atomic number of v_{a} and k_{a} is the degree of the vertex v_{a}.
The huXuID method requires the input graph to store the atomic numbers or chemical symbols in the "atom" vertex data attribute and the conventional bond order in the "bond" edge data attribute.
> huXuID (g)
[1] 0.9615091
> huXuID(g, deg=vec.degree)
[1] 0.9615091

4 Calculating Multiple Descriptors at Once

The calculateDescriptors function provides a simple interface to calculate a set of descriptors on a list of input graphs. The result is returned as a data frame. The desired functions can be specified by name or by number, the latter of which can be found in gray type in the margin of this vignette. Numbers divisible by 1000 will trigger the calculation of all the descriptors from a group. It is also possible to name the resulting columns according to the names given in this document.

The function documentation contains a detailed usage description and a full list of the supported descriptors together with their numbers.

```
> calculateDescriptors(g, "wiener")
    wiener
142
> calculateDescriptors(g, 1001)
    wiener
142
> calculateDescriptors(g, 2000, labels=TRUE)
```

	A	Z[1]	Z [2]	MZI	AZI	VZI	R	B	E [N]	ABC
1	16	32	334	0.9569444	375.6957	6.086111	3.768881	3.422222	0.25	9.783013

5 Session Info

```
> sessionInfo()
R version 3.1.2 Patched (2014-11-18 r66997)
Platform: x86_64-unknown-linux-gnu (64-bit)
locale:
    [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
    [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
    [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
    [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
    [9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
```

```
[1] Rmpfr_0.5-6 gmp_0.5-12 QuACN_1.8.0 combinat_0.0-8 RBGL_1.42.0
```

[1] Rmpfr_0.5-6 gmp_0.5-12 QuACN_1.8.0 combinat_0.0-8 RBGL_1.42.0
[6] graph_1.44.0

```
loaded via a namespace (and not attached):
[1] BiocGenerics_0.12.1 igraph_0.7.1 parallel_3.1.2
[4] stats4_3.1.2 tools_3.1.2

\section*{References}
[1] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, A. P. Arkin, B. J. Bornstein, D. Bray, A. Cornish-Bowden, A. A. Cuellar, S. Dronov, E. D. Gilles, M. Ginkel, V. Gor, I. I. Goryanin, W. J. Hedley, T. C. Hodgman, J.-H. Hofmeyr, P. J. Hunter, N. S. Juty, J. L. Kasberger, A. Kremling, U. Kummer, N. L. Novère, L. M. Loew, D. Lucio, P. Mendes, E. Minch, E. D. Mjolsness, Y. Nakayama,
M. R. Nelson, P. F. Nielsen, T. Sakurada, J. C. Schaff, B. E. Shapiro, T. S. Shimizu, H. D. Spence, J. Stelling, K. Takahashi, M. Tomita, J. Wagner, J. Wang, and S. B. M. L. Forum, "The Systems Biology Markup Language (SBML): A Medium for Representation and Exchange of Biochemical Network Models." Bioinformatics, vol. 19, no. 4, pp. 524-531, Mar 2003.
[2] F. Hahne, W. Huber, R. Gentleman, and S. Falcon, Bioconductor Case Studies, 1st ed. Springer Publishing Company, Incorporated, 2008.
[3] H. Wiener, "Structural Determination of Paraffin Boiling Points," Journal of the American Chemical Society, vol. 69, no. 1, pp. 17-20, Jan. 1947. [Online]. Available: http://dx.doi.org/10.1021/ja01193a005
[4] A. T. Balaban and O. Ivanciuc, "Historical Development of Topological Indices," in Topological Indices and Related Descriptors in \(Q S A R\) and \(Q S P A R\), J. Devillers and A. T. Balaban, Eds. Gordon and Breach Science Publishers, 1999, pp. 21-57, amsterdam, The Netherlands.
[5] A. T. Balaban, "Highly Discriminating Distance-based Topological Index," Chem.Phys.Lett., vol. 89, pp. 399-404, 1982.
[6] V. A. Skorobogatov and A. A. Dobrynin, "Metrical Analysis of Graphs," Commun. Math. Comp. Chem., vol. 23, pp. 105-155, 1988.
[7] J. K. Doyle and J. E. Garver, "Mean Distance in a Graph," Discrete Mathematics, vol. 17, pp. 147-154, 1977.
[8] H. P. Schultz, E. B. Schultz, and T. P. Schultz, "Topological Organic Chemistry. 4. Graph Theory, Matrix Permanents, and Topological Indices of Alkanes," Journal of Chemical Information and Computer Sciences, vol. 32, no. 1, pp. 69-72, 1992.
[9] R. Todeschini, V. Consonni, and R. Mannhold, Handbook of Molecular Descriptors. Wiley-VCH, 2002, weinheim, Germany.
[10] D. Bonchev and D. H. Rouvray, Complexity in Chemistry, Biology, and Ecology, ser. Mathematical and Computational Chemistry. Springer, 2005, New York, NY, USA.
[11] M. V. Diudea, I. Gutman, and L. Jantschi, Molecular Topology. Nova Publishing, 2001, new York, NY, USA.
[12] S. Nikolić, G. Kovačević, A. Milicević, and N. Trinajstić, "The Zagreb Indices 30 Years After," Croatica Chemica Acta, vol. 76, pp. 113-124, 2003.
[13] X. Li and I. Gutman, Mathematical Aspects of Randić-Type Molecular Structure Descriptors, ser. Mathematical Chemistry Monographs. University of Kragujevac and Faculty of Science Kragujevac, 2006.
[14] E. Estrada, L. Torres, L. Rodríguez, and I. Gutman, "An Atom-Bond Connectivity Index: Modelling the Enthalpy of Formation of Alkanes." Indian Journal of Chemistry, vol. 37A, pp. 849-855, 1998.
[15] B. Zhou, I. Gutman, B. Furtula, and Z. Du, "On two Types of Geometric-Arithmetic Index," Chemical Physics Letters, vol. 482, pp. 153-155, 2009.
[16] H. Narumi and M. Katayama, "Simple Topological Index. A Newly Devised Index Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons." Mem. Fac. Engin. Hokkaido Univ., vol. 16, p. 209, 1984.
[17] A. Mowshowitz, "Entropy and the Complexity of the Graphs I: An Index of the Relative Complexity of a Graph," Bull. Math. Biophys., vol. 30, pp. 175-204, 1968.
[18] N. Rashevsky, "Life, Information Theory, and Topology," Bull. Math. Biophys., vol. 17, pp. 229-235, 1955.
[19] D. Bonchev and N. Trinajstić, "Information Theory, Distance Matrix and Molecular Branching," J. Chem. Phys., vol. 67, pp. 4517-4533, 1977.
[20] S. H. Bertz, "The First General Index of Molecular Complexity," Journal of the American Chemical Society, vol. 103, pp. 3241-3243, 1981.
[21] D. Bonchev, Information Theoretic Indices for Characterization of Chemical Structures. Research Studies Press, Chichester, 1983.
[22] A. T. Balaban and T. S. Balaban, "New Vertex Invariants and Topological Indices of Chemical Graphs Based on Information on Distances," J. Math. Chem., vol. 8, pp. 383-397, 1991.
[23] C. Raychaudhury, S. K. Ray, J. J. Ghosh, A. B. Roy, and S. C. Basak, "Discrimination of Isomeric Structures using Information Theoretic Topological Indices," Journal of Computational Chemistry, vol. 5, pp. 581-588, 1984.
[24] S. V. Dosmorov, "Generation of Homogeneous Reaction Mechanism," Kinetics and Catalysis, 1982.
[25] D. Bonchev, O. Mekenyan, and N. Trinajstic, "Isomer Discrimination by Topological Information Approach," Journal of Computational Chemistry, vol. 2, pp. 127-148, 1981.
[26] A. Mowshowitz and M. Dehmer, "A Symmetry Index for Graphs," Symmetry: Culture and Science, vol. 21, no. 4, pp. 321-327, 2010.
[27] S. C. Basak, A. T. Balaban, and S. Bertelsen, "New Centric Topological Indexes for Acyclic Molecules (Trees) and Substituents (Rooted Trees), and Coding of Rooted Trees," MATCH Commun. Math. Comput. chem, vol. 30, pp. 55-72, 1994.
[28] E. V. Konstantinova and A. A. Paleev, "Sensitivity of Topological Indices of Polycyclic Graphs," pp. 831-852, 2006.
[29] J. Kim and T. Wilhelm, "What is a Complex Graph?" Physica A: Statistical Mechanics and its Applications, vol. 387, no. 11, pp. 2637 - 2652, 2008.
[30] M. Dehmer and L. Sivakumar, "On Distance-Based Entropy Measures," MATCH Commun. Math. Comput. chem, vol. MCM12, 2011.
[31] M. Dehmer, "Information Processing in Complex Networks: Graph Entropy and Information Functionals," Applied Mathematics and Computation, vol. 201, pp. 82-94, 2008.
[32] M. Dehmer, K. Varmuza, S. Borgert, and F. Emmert-Streib, "On Entropy-based Molecular Descriptors: Statistical Analysis of Real and Synthetic Chemical Structures," J. Chem. Inf. Model., vol. 49, pp. 1655-1663, 2009.
[33] M. Dehmer, F. Emmert-Streib, Y. Tsoy, and K. Varmuza, "Quantifying Structural Complexity of Graphs: Information Measures in Mathematical Chemistry," in Quantum Frontiers of Atoms and Molecules, M. Putz, Ed. Nova Publishing, 2010, ch. 18, pp. 479-497.
[34] M. Dehmer, N. Barbarini, K. Varmuza, and A. Graber, "Novel topological descriptors for analyzing biological networks," BMC Structural Biology, vol. 10, no. 1, p. 18, 2010.
[35] I. Gutman and B. Zhou, "Laplacian Energy of a Graph," Linear Algebra and its Applications, vol. 414, no. 1, pp. 29-37, 2006.
[36] E. Estrada, "Characterization of 3D Molecular Structure," Chemical Physics Letters, vol. 319, pp. 713718, 2000.
[37] G. H. Fath-Tabar, A. R. Ashrafi, and I. Gutman, "Note on Estrada and L-Estrada Indices of Graphs," Classe des Sciences Mathématiques et Naturelles, Sciences mathématiques naturelles / sciences mathematiques, vol. CXXXIX, no. 34, pp. 1-16, 2009.
[38] D. Watts, Small Worlds: The Dynamics of Networks Between Order and Randomness. Princeton Univ Pr, 2003.
[39] D. Watts and S. Strogatz, "Collective dynamics of 'Small-World' Networks," Nature, vol. 393, no. 6684, pp. 440-442, 1998.
[40] M. Randic, "On Molecular Identification Numbers," Journal of Chemical Information and Computer Sciences, vol. 24, no. 3, pp. 164-175, 1984.
[41] O. Ivanciuc and A. Balaban, "Design of Topological Indices. Part 3. New Identification Numbers for Chemical Structures: MINID and MINSID," Croatica chemica acta, vol. 69, pp. 9-16, 1996.
[42] M. Randic, "Molecular ID numbers: By Design," Journal of Chemical Information and Computer Sciences, vol. 26, no. 3, pp. 134-136, 1986.
[43] M. Randić and P. Jurs, "On a Fragment Approach to Structure-activity Correlations," Quantitative Structure-Activity Relationships, vol. 8, no. 1, pp. 39-48, 1989.
[44] A. T. Balaban, "Numerical Modelling of Chemical Structures: Local Graph Invariants and Topological Indices," in Graph Theory and Topology in Chemistry, R. King and D. Rouvray, Eds. Elsevier, Amsterdam, 1987, pp. 159-176.
[45] K. Szymanski, W. Müller, J. Knop, and N. Trinajstić, "On the Identification Numbers for Chemical Structures," International Journal of Quantum Chemistry, vol. 30, no. S20, pp. 173-183, 1986.
[46] C. Hu and L. Xu, "On Hall and Kier's Topological State and Total Topological Index," Journal of Chemical Information and Computer Sciences, vol. 34, no. 6, pp. 1251-1258, 1994.```


[^0]:    * Corresponding author.

