
Writing a package that uses Rcpp

Dirk Eddelbuettel Romain François

Rcpp version 0.10.6.1 as of November 25, 2013

Abstract

This document provides a short overview of how to use Rcpp~(Eddelbuettel and François, 2013a, 2011) when writing
an R package. It shows how usage of the function Rcpp.package.skeleton which creates a complete and self-sufficient
example package using Rcpp. All components of the directory tree created by Rcpp.package.skeleton are discussed in
detail. This document thereby complements the Writing R Extensions manual~(R Development Core Team, 2012) which is
the authoritative source on how to extend R in general.

1 Introduction
Rcpp~(Eddelbuettel and François, 2013a, 2011) is an extension package for R which offers an easy-to-use yet featureful
interface between C++ and R. However, it is somewhat different from a traditional R package because its key component
is a C++ library. A client package that wants to make use of the Rcpp features must link against the library provided by
Rcpp.

It should be noted that R has only limited support for C(++)-level dependencies between packages~(R Development
Core Team, 2012). The LinkingTo declaration in the package DESCRIPTION file allows the client package to retrieve the
headers of the target package (here Rcpp), but support for linking against a library is not provided by R and has to be
added manually.

This document follows the steps of the Rcpp.package.skeleton function to illustrate a recommended way of using
Rcpp from a client package. We illustrate this using a simple C++ function which will be called by an R function.

We strongly encourage the reader to become familiar with the material in the Writing R Extensions manual~(R
Development Core Team, 2012), as well as with other documents on R package creation such as Leisch (2008). Given a
basic understanding of how to create R package, the present document aims to provide the additional information on how
to use Rcpp in such add-on packages.

2 Using Rcpp.package.skeleton

2.1 Overview
Rcpp provides a function Rcpp.package.skeleton, modeled after the base R function package.skeleton, which
facilitates creation of a skeleton package using Rcpp.

Rcpp.package.skeleton has a number of arguments documented on its help page (and similar to those of pack-
age.skeleton). The main argument is the first one which provides the name of the package one aims to create by invoking
the function. An illustration of a call using an argument mypackage is provided below.

> Rcpp.package.skeleton("mypackage")

$ ls -1R mypackage/

DESCRIPTION

NAMESPACE

R

Read-and-delete-me

1

http://finzi.psych.upenn.edu/R/library/Rcpp/html/Rcpp.package.skeleton.html
http://finzi.psych.upenn.edu/R/library/Rcpp/html/Rcpp.package.skeleton.html
http://finzi.psych.upenn.edu/R/library/Rcpp/html/Rcpp.package.skeleton.html
http://finzi.psych.upenn.edu/R/library/Rcpp/html/Rcpp.package.skeleton.html
http://finzi.psych.upenn.edu/R/library/utils/html/package.skeleton.html
http://finzi.psych.upenn.edu/R/library/Rcpp/html/Rcpp.package.skeleton.html
http://finzi.psych.upenn.edu/R/library/utils/html/package.skeleton.html
http://finzi.psych.upenn.edu/R/library/utils/html/package.skeleton.html

man

src

mypackage/R:

RcppExports.R

mypackage/man:

mypackage-package.Rd

rcpp_hello_world.Rd

mypackage/src:

Makevars

Makevars.win

RcppExports.cpp

rcpp_hello_world.cpp

$

Using Rcpp.package.skeleton is by far the simplest approach as it fulfills two roles. It creates the complete set of
files needed for a package, and it also includes the different components needed for using Rcpp that we discuss in the
following sections.

2.2 C++ code
If the attributes argument is set to TRUE1, the following C++ file is included in the src/ directory:

#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]
List rcpp_hello_world() {

CharacterVector x = CharacterVector::create("foo", "bar") ;

NumericVector y = NumericVector::create(0.0, 1.0) ;

List z = List::create(x, y) ;

return z ;

}

The file defines the simple rcpp_hello_world function that uses a few Rcpp classes and returns a List.
This function is preceded by the Rcpp::export attribute to automatically handle argument conversion because R has

to be taught how to e.g. handle the List class.
Rcpp.package.skeleton then invokes compileAttributes on the package, which generates the RcppExports.cpp

file:

// This file was generated by Rcpp::compileAttributes
// Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393

#include <Rcpp.h>

using namespace Rcpp;

// rcpp_hello_world

1Setting attributes to TRUE is the default. This document does not cover the behavior of Rcpp.package.skeleton when attributes is set to
FALSE as we try to encourage package developpers to use attributes.

2

http://finzi.psych.upenn.edu/R/library/Rcpp/html/Rcpp.package.skeleton.html
http://finzi.psych.upenn.edu/R/library/Rcpp/html/Rcpp.package.skeleton.html
http://finzi.psych.upenn.edu/R/library/Rcpp/html/compileAttributes.html

List rcpp_hello_world();

RcppExport SEXP mypackage_rcpp_hello_world() {

BEGIN_RCPP

SEXP __sexp_result;

{

Rcpp::RNGScope __rngScope;

List __result = rcpp_hello_world();

PROTECT(__sexp_result = Rcpp::wrap(__result));

}

UNPROTECT(1);

return __sexp_result;

END_RCPP

}

This file defines a function with the appropriate calling convention, suitable for .Call. It needs to be regenerated
each time functions exposed by attributes are modified. This is the task of the compileAttributes function. A discussion
on attributes is beyond the scope of this document and more information is available in the attributes vignette (Allaire,
Eddelbuettel, and François, 2013).

2.3 R code
The compileAttributes also generates R code that uses the C++ function.

This file was generated by Rcpp::compileAttributes

Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393

rcpp_hello_world <- function() {

.Call(’mypackage_rcpp_hello_world’, PACKAGE = ’mypackage’)

}

This is also a generated file so it should not be modified manually, rather regenerated as needed by compileAttributes.

2.4 DESCRIPTION

The skeleton generates an appropriate DESCRIPTION file, using both Depends: and LinkingTo for Rcpp:

Package: mypackage

Type: Package

Title: What the package does (short line)

Version: 1.0

Date: 2013-09-17

Author: Who wrote it

Maintainer: Who to complain to <yourfault@somewhere.net>

Description: More about what it does (maybe more than one line)

License: What Licence is it under ?

Depends: Rcpp (>= 0.10.4.5)

LinkingTo: Rcpp

Rcpp.package.skeleton adds the three last lines to the DESCRIPTION file generated by package.skeleton.
The Depends declaration indicates R-level dependency between the client package and Rcpp. The LinkingTo declara-

tion indicates that the client package needs to use header files exposed by Rcpp.

3

http://finzi.psych.upenn.edu/R/library/base/html/CallExternal.html
http://finzi.psych.upenn.edu/R/library/Rcpp/html/compileAttributes.html
http://finzi.psych.upenn.edu/R/library/Rcpp/html/compileAttributes.html
http://finzi.psych.upenn.edu/R/library/Rcpp/html/compileAttributes.html
http://finzi.psych.upenn.edu/R/library/Rcpp/html/Rcpp.package.skeleton.html
http://finzi.psych.upenn.edu/R/library/utils/html/package.skeleton.html

2.5 Makevars and Makevars.win

Unfortunately, the LinkingTo declaration in itself is not enough to link to the user C++ library of Rcpp. Until more
explicit support for libraries is added to R, we need to manually add the Rcpp library to the PKG_LIBS variable in the
Makevars and Makevars.win files. Rcpp provides the unexported function Rcpp:::LdFlags() to ease the process:

Use the R_HOME indirection to support installations of multiple R version

PKG_LIBS = `$(R_HOME)/bin/Rscript -e "Rcpp:::LdFlags()"`

As an alternative, one can also add this code in a file 'configure'
##

PKG_LIBS=`${R_HOME}/bin/Rscript -e "Rcpp:::LdFlags()"`
##

sed -e "s|@PKG_LIBS@|${PKG_LIBS}|" \

src/Makevars.in > src/Makevars

##

which together with the following file 'src/Makevars.in'
##

PKG_LIBS = @PKG_LIBS@

##

can be used to create src/Makevars dynamically. This scheme is more

powerful and can be expanded to also check for and link with other

libraries. It should be complemented by a file 'cleanup'
##

rm src/Makevars

##

which removes the autogenerated file src/Makevars.

##

Of course, autoconf can also be used to write configure files. This is

done by a number of packages, but recommended only for more advanced users

comfortable with autoconf and its related tools.

The Makevars.win is the equivalent, targeting windows.

Use the R_HOME indirection to support installations of multiple R version

PKG_LIBS = $(shell "${R_HOME}/bin${R_ARCH_BIN}/Rscript.exe" -e "Rcpp:::LdFlags()")

2.6 NAMESPACE

The Rcpp.package.skeleton function also creates a file NAMESPACE.

useDynLib(mypackage)

exportPattern("^[[:alpha:]]+")

This file serves two purposes. First, it ensure that the dynamic library contained in the package we are creating via
Rcpp.package.skeleton will be loaded and thereby made available to the newly created R package. Second, it declares
which functions should be globally visible from the namespace of this package. As a reasonable default, we export all
functions.

2.7 Help files
Also created is a directory man containing two help files. One is for the package itself, the other for the (single) R function
being provided and exported.

The Writing R Extensions manual~(R Development Core Team, 2012) provides the complete documentation on how to
create suitable content for help files.

4

http://finzi.psych.upenn.edu/R/library/Rcpp/html/Rcpp.package.skeleton.html
http://finzi.psych.upenn.edu/R/library/Rcpp/html/Rcpp.package.skeleton.html

2.7.1 mypackage-package.Rd

The help file mypackage-package.Rd can be used to describe the new package.

\name{mypackage-package}

\alias{mypackage-package}

\alias{mypackage}

\docType{package}

\title{

What the package does (short line)

}

\description{

More about what it does (maybe more than one line)

~~ A concise (1-5 lines) description of the package ~~

}

\details{

\tabular{ll}{

Package: \tab mypackage\cr

Type: \tab Package\cr

Version: \tab 1.0\cr

Date: \tab 2013-09-17\cr

License: \tab What license is it under?\cr

}

~~ An overview of how to use the package, including the most important functions ~~

}

\author{

Who wrote it

Maintainer: Who to complain to <yourfault@somewhere.net>

}

\references{

~~ Literature or other references for background information ~~

}

~~ Optionally other standard keywords, one per line, from file KEYWORDS in the R documentation directory ~~

\keyword{ package }

\seealso{

~~ Optional links to other man pages, e.g. ~~

~~ \code{\link[<pkg>:<pkg>-package]{<pkg>}} ~~

}

\examples{

%% ~~ simple examples of the most important functions ~~

}

2.7.2 rcpp_hello_world.Rd

The help file rcpp_hello_world.Rd serves as documentation for the example R function.

\name{rcpp_hello_world}

\alias{rcpp_hello_world}

\docType{package}

\title{

Simple function using Rcpp

}

\description{

Simple function using Rcpp

}

5

\usage{

rcpp_hello_world()

}

\examples{

\dontrun{

rcpp_hello_world()

}

}

3 Using modules
This document does not cover the use of the module argument of Rcpp.package.skeleton. It is covered in the modules
vignette (Eddelbuettel and François, 2013b).

4 Further examples
The canonical example of a package that uses Rcpp is the RcppExamples (Eddelbuettel and François, 2013c) package.
RcppExamples contains various examples of using Rcpp. Hence, the RcppExamples package is provided as a template
for employing Rcpp in packages.

Other CRAN packages using the Rcpp package are RcppArmadillo (François, Eddelbuettel, and Bates, 2013), and
minqa (Bates, Mullen, Nash, and Varadhan, 2012). Several other packages follow older (but still supported and appropriate)
instructions. They can serve examples on how to get data to and from C++ routines, but should not be considered
templates for how to connect to Rcpp. The full list of packages using Rcpp can be found at the CRAN page of Rcpp.

5 Other compilers
Less experienced R users on the Windows platform frequently ask about using Rcpp with the Visual Studio toolchain. That
is simply not possible as R is built with the gcc compiler. Different compilers have different linking conventions. These
conventions are particularly hairy when it comes to using C++. In short, it is not possible to simply drop sources (or
header files) from Rcpp into a C++ project built with Visual Studio, and this note makes no attempt at claiming otherwise.

Rcpp is fully usable on Windows provided the standard Windows toolchain for R is used. See the Writing R Extensions
manual~(R Development Core Team, 2012) for details.

6 Summary
This document described how to use the Rcpp package for R and C++ integration when writing an R extension package.
The use of the Rcpp.package.skeleton was shown in detail, and references to further examples were provided.

References
J.~J. Allaire, Dirk Eddelbuettel, and Romain François. Rcpp Attributes, 2013. URL http://CRAN.R-Project.org/

package=Rcpp. Vignette included in R package Rcpp.

Douglas Bates, Katharine~M. Mullen, John~C. Nash, and Ravi Varadhan. minqa: Derivative-free optimization algorithms by
quadratic approximation, 2012. URL http://CRAN.R-Project.org/package=minqa. R package version 1.2.1.

Dirk Eddelbuettel and Romain François. Rcpp: Seamless R and C++ integration. Journal of Statistical Software, 40(8):
1–18, 2011. URL http://www.jstatsoft.org/v40/i08/.

Dirk Eddelbuettel and Romain François. Rcpp: Seamless R and C++ Integration, 2013a. URL http://CRAN.R-Project.

org/package=Rcpp. R package version 0.10.4.

6

http://finzi.psych.upenn.edu/R/library/Rcpp/html/Rcpp.package.skeleton.html
http://CRAN.R-project.org/package=Rcpp
http://finzi.psych.upenn.edu/R/library/Rcpp/html/Rcpp.package.skeleton.html
http://CRAN.R-Project.org/package=Rcpp
http://CRAN.R-Project.org/package=Rcpp
http://CRAN.R-Project.org/package=minqa
http://www.jstatsoft.org/v40/i08/
http://CRAN.R-Project.org/package=Rcpp
http://CRAN.R-Project.org/package=Rcpp

Dirk Eddelbuettel and Romain François. Exposing C++ functions and classes with Rcpp modules, 2013b. URL http:

//CRAN.R-Project.org/package=Rcpp. Vignette included in R package Rcpp.

Dirk Eddelbuettel and Romain François. RcppExamples: Examples using Rcpp to interface R and C++, 2013c. URL
http://CRAN.R-Project.org/package=RcppExamples. R package version 0.1.6.

Romain François, Dirk Eddelbuettel, and Douglas Bates. RcppArmadillo: Rcpp integration for Armadillo templated linear
algebra library, 2013. URL http://CRAN.R-Project.org/package=RcppArmadillo. R package version 0.3.900.0.

Friedrich Leisch. Tutorial on Creating R Packages. In Paula Brito, editor, COMPSTAT 2008 – Proceedings in
Computational Statistics, Heidelberg, 2008. Physica Verlag. URL http://CRAN.R-Project.org/doc/contrib/

Leisch-CreatingPackages.pdf.

R Development Core Team. Writing R extensions. R Foundation for Statistical Computing, Vienna, Austria, 2012. URL
http://CRAN.R-Project.org/doc/manuals/R-exts.html. ISBN 3-900051-11-9.

7

http://CRAN.R-Project.org/package=Rcpp
http://CRAN.R-Project.org/package=Rcpp
http://CRAN.R-Project.org/package=RcppExamples
http://CRAN.R-Project.org/package=RcppArmadillo
http://CRAN.R-Project.org/doc/contrib/Leisch-CreatingPackages.pdf
http://CRAN.R-Project.org/doc/contrib/Leisch-CreatingPackages.pdf
http://CRAN.R-Project.org/doc/manuals/R-exts.html

	Introduction
	Using Rcpp.package.skeleton
	Overview
	C++ code
	R code
	DESCRIPTION
	Makevars and Makevars.win
	NAMESPACE
	Help files
	mypackage-package.Rd
	rcpp_hello_world.Rd

	Using modules
	Further examples
	Other compilers
	Summary

