The Statistical Sleuth in R: Chapter 13

Kate Aloisio	Ruobing Zhang	Nicholas J. Horton	1*

January 24, 2024

Contents

Intr	roduction	1
Inte	ertidal seaweed grazers	2
2.1	Data coding, summary statistics and graphical display	2
2.2	Models	5
2.3	Linear combinations	8
Pyg	malion effect	11
3.1	Statistical summary	11
3.2	Graphical presentation	12
3.3	Two way ANOVA (fit using multiple linear regression model)	12
3.4	Randomization Methods	15
	Inte 2.1 2.2 2.3 Pyg 3.1 3.2	 2.2 Models

1 Introduction

This document is intended to help describe how to undertake analyses introduced as examples in the Second Edition of the *Statistical Sleuth* (2002) by Fred Ramsey and Dan Schafer. More information about the book can be found at http://www.proaxis.com/~panorama/home.htm. This file as well as the associated knitr reproducible analysis source file can be found at http://www.amherst.edu/~nhorton/sleuth.

This work leverages initiatives undertaken by Project MOSAIC (http://www.mosaic-web. org), an NSF-funded effort to improve the teaching of statistics, calculus, science and computing in the undergraduate curriculum. In particular, we utilize the mosaic package, which was written to simplify the use of R for introductory statistics courses. A short summary of the R needed to teach introductory statistics can be found in the mosaic package vignette (http://cran.r-project. org/web/packages/mosaic/vignettes/MinimalR.pdf).

To use a package within R, it must be installed (one time), and loaded (each session). The package can be installed using the following command:

^{*}Department of Mathematics, Amherst College, nhorton@amherst.edu

2 INTERTIDAL SEAWEED GRAZERS

```
> install.packages('mosaic')  # note the quotation marks
```

Once this is installed, it can be loaded by running the command:

> require(mosaic)

This needs to be done once per session.

In addition the data files for the *Sleuth* case studies can be accessed by installing the **Sleuth2** package.

```
> install.packages('Sleuth2')  # note the quotation marks
```

> require(Sleuth2)

We also set some options to improve legibility of graphs and output.

```
> trellis.par.set(theme=col.mosaic()) # get a better color scheme for lattice
> options(digits=4, show.signif.stars=FALSE)
```

The specific goal of this document is to demonstrate how to calculate the quantities described in Chapter 13: The Analysis of Variance for Two-Way Classifications using R.

2 Intertidal seaweed grazers

This wicked complicated trial is a subset of a factorial design (6 of the possible 2 by 2 by 2 combination of factors) plus blocking. This randomized block design is analyzed in case study 13.1 in the *Sleuth*.

2.1 Data coding, summary statistics and graphical display

We begin by reading the data, performing the necessary transformations and summarizing the variables.

```
> # logit transformation
> case1301 = transform(case1301, logitcover = log(Cover/(100-Cover)))
```

```
> summary(case1301)
```

Cover	Block	Treat	logitcover
Min. : 1.0	B1 :12	2 C :16	Min. :-4.595
1st Qu.: 9.0	B2 :12	2 f :16	1st Qu.:-2.314
Median :22.5	B3 :12	2 fF :16	Median :-1.237
Mean :28.6	B4 :12	2 L :16	Mean :-1.233
3rd Qu.:42.2	B5 :12	2 Lf :16	3rd Qu.:-0.313
Max. :95.0	B6 :12	2 LfF:16	Max. : 2.944
	(Other):24	Ŀ	

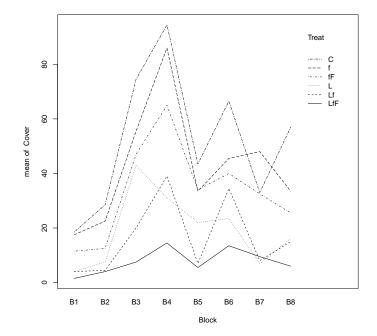
> favstats(logitcover~Treat, data=case1301)

Treat min Q1 median Q3 max mean sd n missing 1 C -1.815 -0.7995 0.1201 0.80579 2.9444 0.1805 1.3990 16 0 2 0 f -2.091 -0.8119 -0.4898 0.09007 2.0907 -0.3137 1.0748 16 3 fF -2.197 -1.7762 -0.5325 -0.30237 0.9946 -0.8214 0.9599 16 0 4 L -3.178 -2.4784 -1.6964 -0.90838 0.3228 -1.7120 1.0215 0 16 5 Lf -3.476 -2.9444 -2.1530 -1.25519 0.2819 -2.0044 1.1399 16 0 LfF -4.595 -2.9444 -2.7515 -2.28453 -1.2657 -2.7247 0.8310 16 6 0

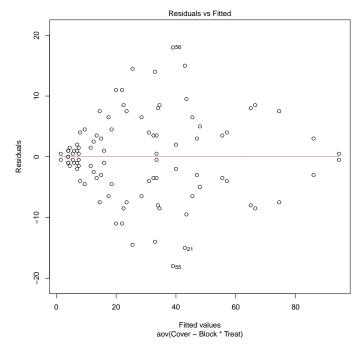
There were a total of 96 rock plots free of seaweed. These plots where split into 8 blocks based on location. Each block contained 12 plots. Then 6 treatments were randomly assigned to plots within each block. Therefore there were two plots per treatment within each block, as shown in Display 13.2 (page 377 of the *Sleuth*).

We can check for evidence of nonadditivity using interaction plots. For a figure akin to Display 13.7 on page 383 we can use the following code:

> with(case1301, interaction.plot(Block, Treat, Cover))



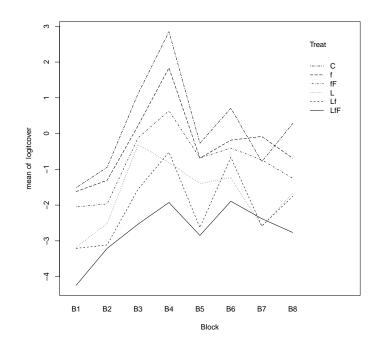
This figure shows evidence of nonadditivity. However as the authors note the type of nonadditivity seen in this figure may be removed by transformations. In addition, the residual plot from the saturated model (shown below and is akin to Display 13.8 on page 384) has a distinct funnel shape, also indicating a need for transformation.



> plot(aov(Cover ~ Block*Treat, data=case1301), which=1)

After the log transformation, we can then observe an interaction plot on the log transformed data akin to Display 13.9 on page 385.

> with(case1301, interaction.plot(Block, Treat, logitcover))



2.2 Models

Then we can create an ANOVA for the nonadditive model estimating the log of the seaweed regeneration ratio as summarized on page 385 (Display 13.10).

```
> anova(lm(logitcover ~ Block*Treat, data=case1301))
Analysis of Variance Table
Response: logitcover
            Df Sum Sq Mean Sq F value Pr(>F)
             7
                  76.2
Block
                         10.89
                                  35.96 <2e-16
Treat
              5
                  97.0
                         19.40
                                  64.06 <2e-16
Block:Treat 35
                  15.2
                                   1.44
                          0.44
                                          0.12
                  14.5
Residuals
            48
                          0.30
```

This model has an R^2 of 92.84%, an adjusted R^2 of 85.83%, and an estimated SD of 0.5503. Notice that the interaction term has a large *p*-value, 0.1209, suggesting that the data may be more consistent with an additive model.

We can then compare these results to an ANOVA for the additive model estimating the log of the seaweed regeneration ratio as shown in Display 13.11 on page 387.

```
> anova(lm(logitcover ~ Block+Treat, data=case1301))
Analysis of Variance Table
```

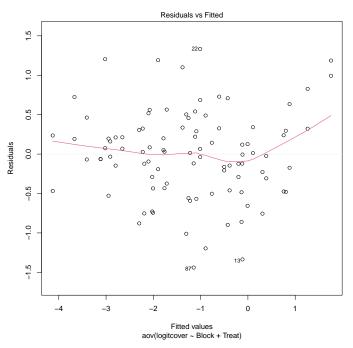
Response: logitcover

	Df	Sum Sq	Mean Sq	F	value	Pr(>F)
Block	7	76.2	10.89		30.4	<2e-16
Treat	5	97.0	19.40		54.1	<2e-16
Residuals	83	29.8	0.36			

This model has an R^2 of 85.34%, an adjusted R^2 of 83.22%, and an estimated SD of 0.5989.

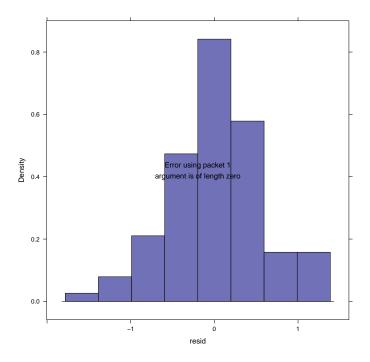
Next we can assess the fit of the additive model through diagnostic plots. First we can check the linearity assumption.

> plot(aov(logitcover ~ Block+Treat, data=case1301), which=1)



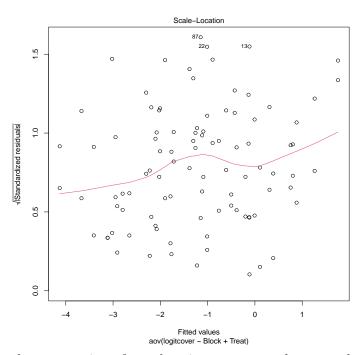
From this plot is appears that the linearity assumption seems reasonable. We will need to assume independence based on the information given. Next we will assess the normality assumption for the additive model.

```
> case1301$resid = residuals(aov(logitcover ~ Block+Treat, data=case1301))
> histogram(~ resid, type='density', density=TRUE, data=case1301)
```



From this figure normality seems reasonable as well. Now we can assess equality of variance.

> plot(aov(logitcover ~ Block+Treat, data=case1301), which=3)

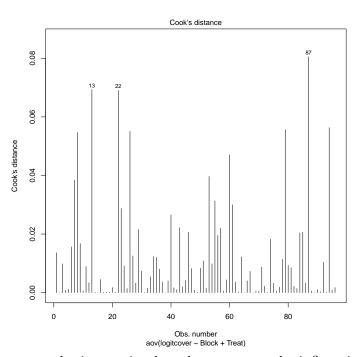


From this figure, the assumption of equal variance seems to be somewhat problematic, as seen

in the curvature of the lowess line.

Lastly we can look for influential points and/or high leverage with the additive model.

> plot(aov(logitcover ~ Block+Treat, data=case1301), which=4)



From this figure we can obtain certain plots that appear to be influential points.

```
> case1301[c(13, 22, 87),]
   Cover Block Treat logitcover resid
13
      19
            Β7
                    С
                         -1.4500 -1.336
22
      58
            BЗ
                    L
                          0.3228 1.333
       7
            Β4
                  LfF
                         -2.5867 -1.440
87
```

2.3 Linear combinations

First we can observe the Block and Treatment averages and the Block and Treatment effects from Display 13.12 (page 388).

For the effects we used:

```
> model.tables(aov(lm(logitcover ~ Block*Treat, data=case1301)), type="effects")
Tables of effects
Block
```

Block B1 B2 B3 B4 B5 B6 B7 B8 -1.4031 -0.9432 0.7015 1.5776 -0.1871 0.6220 -0.2946 -0.0731 Treat Treat f fF L Lf LfF С 1.4131 0.9190 0.4112 -0.4794 -0.7718 -1.4921 Block:Treat Treat f fF L Lf LfF Block C B1 -0.2892 0.0951 0.1755 -0.0629 0.1972 -0.1157 B2 -0.1797 -0.0509 -0.2013 0.1406 -0.1663 0.4576 B3 0.2303 -0.1658 -0.0007 0.6996 -0.2540 -0.5094 B4 1.0899 0.5743 -0.1179 -0.6724 -0.0947 -0.7791 B5 -0.2650 -0.1850 0.3241 0.4996 -0.4376 0.0638 B6 -0.0918 -0.4920 -0.2067 -0.1392 0.7185 0.2112 B7 -0.6709 0.5274 0.3807 -0.5903 -0.2862 0.6394 B8 0.1763 -0.3030 -0.3536 0.1250 0.3231 0.0322 For the means we changed the type attribute to "means": > model.tables(aov(lm(logitcover ~ Block*Treat, data=case1301)), type="means") Tables of means Grand mean -1.233Block Block B1 B2 B3 B4 B5 B6 B7 B8 -2.6357 -2.1758 -0.5311 0.3450 -1.4197 -0.6106 -1.5272 -1.3057 Treat Treat С f fF L Lf LfF 0.1805 -0.3137 -0.8214 -1.7120 -2.0044 -2.7247 Block:Treat

Treat Block C f fF L Lf LfF B1 -1.512 -1.622 -2.049 -3.178 -3.210 -4.243 B2 -0.942 -1.308 -1.966 -2.515 -3.114 -3.210 B3 1.112 0.222 -0.121 -0.311 -1.557 -2.533

 B4
 2.848
 1.838
 0.638
 -0.807
 -0.522
 -1.926

 B5
 -0.272
 -0.686
 -0.684
 -1.399
 -2.629
 -2.848

 B6
 0.711
 -0.184
 -0.406
 -1.229
 -0.664
 -1.891

 B7
 -0.785
 -0.081
 -0.735
 -2.597
 -2.585
 -2.380

 B8
 0.284
 -0.690
 -1.248
 -1.660
 -1.754
 -2.766

To answer specific questions of interest regarding subgroup comparisons we can use linear combinations. The *Sleuth* proposes five questions as detailed on pages 289-390. The code for results of these questions is displayed below and these results are also interpreted on pages 389-390 and summarized in Display 13.13. For this model the reference group is *control* followed by f, fF, L, Lf, LfF.

```
> require(gmodels)
> lm1 = lm(logitcover ~ Treat+Block, data=case1301); coef(lm1)
(Intercept)
                Treatf
                           TreatfF
                                        TreatL
                                                   TreatLf
                                                              TreatLfF
   -1.2226
                -0.4941
                           -1.0019
                                       -1.8925
                                                   -2.1849
                                                               -2.9052
    BlockB2
               BlockB3
                           BlockB4
                                       BlockB5
                                                   BlockB6
                                                               BlockB7
    0.4600
                2.1046
                           2.9807
                                       1.2160
                                                   2.0251
                                                                1.1085
    BlockB8
     1.3300
> large = rbind('Large fish' = c(0, -1/2, 1/2, 0, -1/2, 1/2))
> small = rbind('Small fish' = c(-1/2, 1/2, 0, -1/2, 1/2, 0))
> limpets = rbind('Limpets' = c(-1/3, -1/3, -1/3, 1/3, 1/3, 1/3))
> limpetsSmall = rbind('Limpets X Small' = c(1, -1/2, -1/2, -1, 1/2, 1/2))
> limpetsLarge = rbind('Limpets X Large' = c(0, 1, -1, 0, -1, 1))
> fit.contrast(lm1, "Treat", large, conf.int=.95)
                Estimate Std. Error t value Pr(>|t|) lower CI upper CI
TreatLarge fish -0.614 0.1497 -4.101 9.54e-05 -0.9118 -0.3162
attr(,"class")
[1] "fit_contrast"
> fit.contrast(lm1, "Treat", small, conf.int=.95)
                Estimate Std. Error t value Pr(>|t|) lower CI upper CI
TreatSmall fish -0.3933
                           0.1497 -2.627 0.01026 -0.691 -0.09549
attr(,"class")
[1] "fit_contrast"
> fit.contrast(lm1, "Treat", limpets, conf.int=.95)
             Estimate Std. Error t value Pr(>|t|) lower CI upper CI
              -1.829 0.1222 -14.96 2.778e-25 -2.072
TreatLimpets
                                                             -1.586
attr(,"class")
[1] "fit_contrast"
```

To attain the confidence intervals discussed in the "Summary of Statistical Findings" (page 376) we need to exponential the lower and upper bounds of the above 95% confidence intervals. Therefore, for the limpets estimation, the corresponding 95% confidence interval is (0.126, 0.205). The resulting large fish 95% confidence interval is (0.402, 0.729). Lastly for the estimation of the regeneration ratio for small fish the 95% confidence interval is (0.501, 0.909).

3 Pygmalion effect

Does expected excellence affect performance? More specifically, does telling a manager that some of the supervisees are "superior" affect the supervisor's perception of their performance (Pygmalion effect)? This is the question addressed in case study 13.2 in the *Sleuth*.

3.1 Statistical summary

We begin by reading the data and summarizing the variables.

```
> summary(case1302)
```

(Company	Tre	eat	Sco	ore	
C1	: 3	Pygmalior	1:10	Min.	:59.5	
C2	: 3	Control	:19	1st Qu.	:69.2	
C4	: 3			Median	:73.9	
C5	: 3			Mean	:74.1	
C6	: 3			3rd Qu.	:78.9	
C7	: 3			Max.	:89.8	
(Otł	ner):11					

> case1302\$newTreat = relevel(case1302\$Treat, ref="Control")

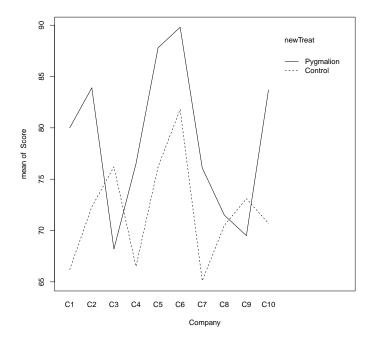
There were a total of 29 platoons. For each of the 10 companies, one platoon received the Pygmalion treatment and two platoons were control, with the exception of one company that only had one control platoon. Therefore, there were 10 Pygmalion platoons and 19 control platoons. As shown in Display 13.3 (page 378 of the *Sleuth*).

3 PYGMALION EFFECT

3.2 Graphical presentation

The following figure displays an interaction plot for the Pygmalion dataset, akin to Display 13.14 on page 392.

> with(case1302, interaction.plot(Company, newTreat, Score))



3.3 Two way ANOVA (fit using multiple linear regression model)

We can then use multiple linear regression models for the additive and nonadditive models and compare them using the two-way ANOVA.

The following is similar to Display 13.16 (page 394).

```
> lm1 = lm(Score ~ Company*newTreat, data=case1302); summary(lm1)
Call:
lm(formula = Score ~ Company * newTreat, data = case1302)
Residuals:
   Min
           1Q Median
                         ЗQ
                                Max
  -9.2
         -2.3
                 0.0
                        2.3
                                9.2
Coefficients:
                              Estimate Std. Error t value Pr(>|t|)
(Intercept)
                                 66.20
                                             5.09
                                                   13.00 3.9e-07
```

3 PYGMALION EFFECT

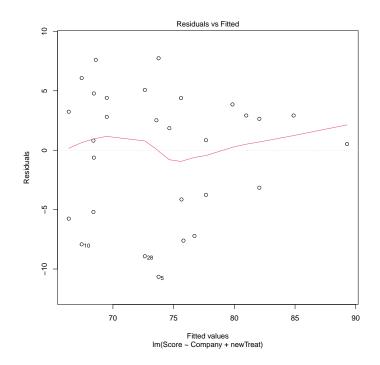
CompanyC2 CompanyC3 CompanyC4 CompanyC5	6.10 10.00	7.20 8.82	0.85	0.419	
CompanyC4 CompanyC5		0 00			
CompanyC5			1.13	0.286	
- V	0.30	7.20	0.04	0.968	
	10.00	7.20	1.39	0.198	
CompanyC6	15.60	7.20		0.059	
CompanyC7	-1.10	7.20		0.882	
CompanyC8	4.30	7.20	0.60	0.565	
CompanyC9	6.90	7.20	0.96	0.363	
CompanyC10	4.50	7.20		0.548	
newTreatPygmalion	13.80	8.82		0.152	
CompanyC2:newTreatPygmalion		12.48		0.864	
CompanyC3:newTreatPygmalion		13.48		0.140	
$\verb CompanyC4:newTreatPygmalion $		12.48		0.768	
$\verb CompanyC5:newTreatPygmalion $	-2.20	12.48	-0.18	0.864	
$\verb CompanyC6:newTreatPygmalion $	-5.80	12.48	-0.46	0.653	
$\verb CompanyC7:newTreatPygmalion $	-2.80	12.48	-0.22	0.827	
$\verb CompanyC8:newTreatPygmalion $	-12.80	12.48	-1.03	0.332	
CompanyC9:newTreatPygmalion	-17.40	12.48	-1.39	0.197	
CompanyC10:newTreatPygmalion	n -0.80	12.48	-0.06	0.950	
Call:					
<pre>lm(formula = Score ~ Compan;</pre>	y + newTreat,	data = c	ase1302)		
Residuals:					
Min 1Q Median 3Q	Max				
-10.66 -4.15 1.85 3.85					
Coefficients:					
Estimate	Std. Error t	value Pr((> t)		
(Intercept) 68.3932			9e-13		
CompanyC2 5.3667	5.3697	1.00	0.331		
CompanyC3 0.1966	6.0189	0.03	0.974		
CompanyC4 -0.9667		-0.18	0.859		
1	5.3697	1.73	0.102		
CompanyC5 9.2667					
CompanyC5 9.2667 CompanyC6 13.6667	5.3697	2.55	0.020		
CompanyC6 13.6667	5.3697 5.3697	2.55 -0.38	0.020		
CompanyC6 13.6667 CompanyC7 -2.0333	5.3697	-0.38	0.709		
CompanyC6 13.6667					
lm(formula = Score ~ Company Residuals: Min 1Q Median 3Q	y + newTreat, Max			ary(lm2) # Dispi	lay 13.18

3 PYGMALION EFFECT

newTreatPygmalion 7.220	5 2.5795 2.80 0.012
Multiple R-squared: 0.56	5.58 on 18 degrees of freedom 5,Adjusted R-squared: 0.323 nd 18 DF, p-value: 0.0564
> anova(lm1)	
Analysis of Variance Table	9
Response: Score	q Mean Sq F value Pr(>F)
Company 9 67	÷ •
1 J	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	1 35 0.67 0.722
	7 52
	52
> anova(lm2)	
Analysis of Variance Table	e
Response: Score	
1	Sq F value Pr(>F)
-	75 1.72 0.156
1 5	39 7.84 0.012
Residuals 18 779	
itebiudaib ie iii iii	
> anova(lm2, lm1)	
Analysis of Variance Table	e
Model 1: Score ~ Company Model 2: Score ~ Company Res.Df RSS Df Sum of Sq 1 18 779 2 9 467 9 312	* newTreat F Pr(>F)

Lastly we can observe the residual plot from the fit of the additive model, akin to Display 13.17 on page 395.

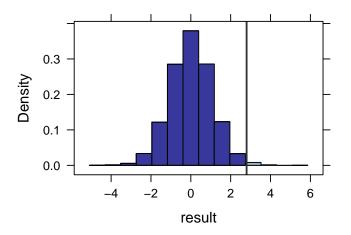
```
> plot(lm2, which=1)
```



3.4 Randomization Methods

As introduced in Chapter 4, we can construct a randomization distribution by considering the distribution of a test statistic over all possible ways the randomization could have turned out. For the Pygmalion data we can construct a randomization distribution for the *t*-statistic of the treatment effect as discussed on pages 397-398.

```
> mod = lm(Score ~ Company+newTreat, data=case1302)
> obs = summary(mod)$coefficients["newTreatPygmalion", "t value"]
> obs
[1] 2.799
> nulldist = do(10000) * summary(lm(Score ~ shuffle(Company)+shuffle(newTreat),
+ data=case1302))$coefficients["shuffle(newTreat)Pygmalion", "t value"]
> histogram(~ result, groups=result >= obs, v=obs, data=nulldist)
> # akin to Display 13.20 page 398
> tally(~ result >= obs, format="proportion", data=nulldist)
result >= obs
TRUE FALSE
0.0066 0.9934
```



From this simulation we observed that the proportion of t-statistics that were as extreme or more extreme than our observed t-statistic (2.799) is 0.0066.

16