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1 Maternal Characteristics

The baseline distribution of variables are in Table 1. For measured blood loss, the uncondi-
tional distributions stratified by mode of delivery are depicted in Figure 1 (a model-based
analysis) and Figure 2 (a non-parametric analysis).

2 Statistical Analysis

2.1 Sample Size Calculation

For sample size calculation, a case-control design was assumed. In a previous study,
F. XIII activity prior to delivery was 83 IU/dL (standard deviation 24 IU/dL Sharief
et al., 2014). Based on the hypothesis that women with postpartum hemorrhage (PPH)
would have a mean F. XIII activity of < 70 IU/dL, 54 patients with PPH were needed
to prove this assumption with a statistical power of 80% at a level of significance of 5%
(two-sided t-test). Supposing a PPH-rate of 4.9% in our patients, a minimal sample size
of 1100 patients was calculated.

During the first months of the study, it was observed that in several patients, the 6mL
Vacutainer tube was not adequately filled and analysis would hence have been inaccurate
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Variable Vaginal delivery (677) Planned Cesarean (409) Unplanned Cesarean (223)
measured blood loss ml Med (IQR) 350.0 (300.0-500.0) 500.0 (400.0-600.0) 500.0 (400.0-700.0)
prepartum F. I g/l missing 1 2 2

Med (IQR) 4.6 (3.9-5.1) 4.3 (3.9-4.8) 4.5 (3.9-5.2)
prepartum F. II % missing 3 2 2

Med (IQR) 128.0 (118.0-140.0) 128.0 (115.0-138.0) 128.0 (115.0-140.0)
prepartum hemoglobin g/l Med (IQR) 128.0 (121.0-135.0) 124.0 (118.0-131.0) 127.0 (120.0-134.0)
prepartum F. XIII % missing 3 2 1

Med (IQR) 98.5 (86.0-117.8) 93.0 (82.0-107.0) 93.0 (80.2-111.0)
number of colloids Med (IQR) 0.0 (0.0-0.0) 1.0 (1.0-1.0) 1.0 (0.0-1.0)
spontaneous delivery no 111 409 223

yes 566 0 0
vacuum delivery no 566 409 223

yes 111 0 0
elective cesarean delivery no 677 0 223

yes 0 409 0
unplanned cesarean delivery no 677 409 13

yes 0 0 210
emergency cesarean delivery no 677 409 210

yes 0 0 13
gestational age days Med (IQR) 280.0 (273.0-285.0) 267.0 (265.0-270.0) 277.0 (267.5-284.0)
maternal age years Med (IQR) 32.0 (29.0-35.0) 34.0 (30.0-37.0) 33.0 (30.0-36.0)
multiparity no 367 155 153

yes 310 254 70

body mass index kg/m2 missing 7 0 1
Med (IQR) 23.2 (20.5-26.8) 25.1 (21.7-28.8) 23.4 (21.0-26.4)

duration of second stage labor min missing 0 409 179
Med (IQR) 51.0 (18.0-121.0) NA (NA-NA) 172.5 (119.2-206.8)

multiple fetus pregnancy no 671 377 210
yes 6 32 13

induction of labor no 414 405 138
yes 263 4 85

induction of labor > 48 hours no 655 408 205
yes 22 1 18

chorioamnionitis no 676 409 214
yes 1 0 9

neonatal weight g/l Med (IQR) 3370.0 (3090.0-3650.0) 3200.0 (2890.0-3510.0) 3340.0 (2945.0-3690.0)
uterine rupture no 677 409 220

yes 0 0 3
uterine atony no 635 402 219

yes 42 7 4
retained placenta no 653 409 223

yes 24 0 0
retained placental material no 651 408 223

yes 26 1 0
morbidly adherent placenta no 676 406 222

yes 1 3 1
placenta previa no 677 400 219

yes 0 9 4
bleeding from laceration no 628 409 223

yes 49 0 0
placental abruption no 675 407 217

yes 2 2 6

Table 1: Distribution of feto-maternal and perinatal characteristics, stratified by mode of
delivery.
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Figure 1: Measured blood loss: Distribution of measured blood loss stratified by mode of
delivery. Rugs indicate measured blood loss observations. One vaginal delivery with 5700
ml blood loss not shown.

due to incorrect dilution with the predefined volume of the Na-citrate buffer. Also, the
blood draw was not performed in time in several patients. To achieve the required sample
size of 1100 evaluable patients, we thus decided to increase the enrollment target to
1500 patients overall, after repeated approval of the IRB. In addition, instructions to the
research staff were intensified. Analysis of coagulation factors only began after recruitment
to the study was completed; thus, it can be excluded that the increase of the sample size
was due to any kind of interim results.

2.2 Methods

The conditional distribution of measured blood loss given prepartal hemoglobin (in g/l),
F. I (in g/l), F. II (in %), and F. XIII (in %) was estimated by continuous outcome logistic
regression (Lohse et al., 2017; Liu et al., 2017). In a first step, all possible binary logistic
regression models for all potential cut-off points measured blood loss were estimated
simultaneously while treating the regression coefficients as constants and thus applicable
to any cut-off point. The regression coefficients describe the log-odds ratio and assess
the change induced by a one-unit increase in one of the four prepartal blood parameters
simultaneously for all potential cut-off points. In more detail, the model describes the
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Figure 2: Measured blood loss: Comparison of model-based distribution estimation (solid
lines, Fig. 1) and the non-parametric Turnbull estimator (dashed lines) for interval-
censored responses; stratified by mode of delivery. One vaginal delivery with 5700 ml
blood loss not shown.

conditional distribution of measured blood loss as

Prob(MBL ≤ m | xHb, xF. I, xF. II, xF. XIII) =

logit−1 (α(m) + βHbxHb + βF. IxF. I + βF. IIxF. II + βF. XIIIxF. XIII)

where α(m) is a cut-off specific non-decreasing intercept function and βHb, . . . , βF. XIII

are the regression coefficients for prepartal hemoglobin (xHb), F. I (xF. I), F. II (xF. II),
and F. XIII (xF. XIII). These regression coefficients can be interpreted as log-odds ratios
comparing the odds of a patient with an F. XIII of xF. XIII + a > xF. XIII with the odds of
a patient with an F. XIII of xF. XIII:

Prob(MBL≤m|xHb,xF. I,xF. II,xF. XIII+a)

1−Prob(MBL≤m|xHb,xF. I,xF. II,xF. XIII+a)/ Prob(MBL≤m|xHb,xF. I,xF. II,xF. XIII)

1−Prob(MBL≤m|xHb,xF. I,xF. II,xF. XIII)
= exp(βF. XIII)

a.

Thus, positive regression coefficients and corresponding odds ratios larger than one in-
crease the odds and, consequently, increasing values of F. XIII increase the probability of
suffering from blood loss less than m (a move of the conditional distribution of measured
blood loss to the left).

In our analysis, measured blood loss was treated as interval censored (with interval
length of 50 ml for blood losses up to 1000 ml and 100 ml for larger blood losses) re-
flecting the uncertainty in the actual measurements. The null hypothesis of all regression
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coefficients being zero was tested by the likelihood ratio test (at nominal level α = 0.05);
95% Wald-type confidence intervals for odds ratios are reported without multiplicity ad-
justment.

In a second step, the impact of potential effect modifiers on the odds ratios of prepartal
blood parameters was assessed using model-based recursive partitioning (Zeileis et al.,
2008). Subgroups of patients identified by feto-maternal and perinatal characteristics were
obtained maximising discrepancies between the regression coefficients of models estimated
within the corresponding subgroups. Variable selection was performed under Bonferroni
correction. Subgroup-specific odds ratios are reported. All analyses were performed using
the add-on packages partykit (Hothorn and Zeileis, 2015) and mlt (Hothorn, 2018) to
the R system for statistical computing (version 4.2.2, R Core Team, 2019).

2.3 Results: Models for Measured Blood Loss

mvars <- c("Hb.prae", "F1.prae", "F2.prae", "F13.Akt.prae")

fm <- paste(mvars, collapse = "+")

### continuous outcome logistic regression

m_MBL <- Colr(as.formula(paste("MBLsurv ~ ", fm)), data = blood,

bounds = c(0, Inf), support = c(250, 2000))

### number of observations

sum(complete.cases(model.frame(m_MBL)))

## [1] 1300

summary(m_MBL)

##

## Continuous Outcome Logistic Regression

##

## Call:

## Colr(formula = as.formula(paste("MBLsurv ~ ", fm)), data = blood,

## bounds = c(0, Inf), support = c(250, 2000))

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## Hb.prae 0.009636 0.004621 2.085 0.03704 *

## F1.prae -0.060481 0.059033 -1.025 0.30559

## F2.prae 0.007711 0.002927 2.634 0.00843 **

## F13.Akt.prae 0.010854 0.002406 4.511 6.46e-06 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Log-Likelihood:

## -3696.599 (df = 11)

## Likelihood-ratio Test: Chisq = 34.36389 on 4 degrees of freedom; p = 6.275e-07

logLik(m_MBL)

## 'log Lik.' -3696.599 (df=11)
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The distribution of measured blood loss is affected by prepartal blood parameters
(χ2 = 34.364, df = 4, p < 0.001). Both increasing prepartal F. II and F. XIII move the
conditional distribution of measured blood loss to the left (positive regression coefficients)
and thus indicate lower blood loss. For the corresponding odds ratios, the confidence
intervals exclude one:

(ci_all <- ci(m_MBL))

## 2.5 % 97.5 %

## Hb.prae 1.009682 1.0005795 1.018868

## F1.prae 0.941312 0.8384639 1.056776

## F2.prae 1.007741 1.0019761 1.013538

## F13.Akt.prae 1.010914 1.0061568 1.015693

The same model (although not under interval-censoring, we used the raw measure-
ments of blood loss) but with negative log-odds ratios can be estimated as

(m_MBL_orm <- orm(as.formula(paste("MBL ~ ", fm)), data = blood))

## Frequencies of Missing Values Due to Each Variable

## MBL Hb.prae F1.prae F2.prae F13.Akt.prae

## 0 0 5 7 6

##

## Logistic (Proportional Odds) Ordinal Regression Model

##

## orm(formula = as.formula(paste("MBL ~ ", fm)), data = blood)

##

##

## Model Likelihood Discrimination Rank Discrim.

## Ratio Test Indexes Indexes

## Obs 1300 LR chi2 31.17 R2 0.024 rho 0.156

## Distinct Y 39 d.f. 4 R2(4,1300) 0.021

## Median Y 400 Pr(> chi2) <0.0001 R2(4,1275.1) 0.021

## max |deriv| 1e-06 Score chi2 31.22 |Pr(Y>=median)-0.5| 0.157

## Pr(> chi2) <0.0001

##

## Coef S.E. Wald Z Pr(>|Z|)

## Hb.prae -0.0067 0.0046 -1.46 0.1442

## F1.prae 0.0608 0.0588 1.03 0.3018

## F2.prae -0.0066 0.0029 -2.28 0.0229

## F13.Akt.prae -0.0103 0.0024 -4.29 <0.0001

##

### OR and confidence interval for F. XIII

### (sign of the coefficient is different in rms::orm and tram::Colr)

exp(-coef(m_MBL_orm)["F13.Akt.prae"])

## F13.Akt.prae

## 1.010382
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exp(-rev(confint(m_MBL_orm)["F13.Akt.prae",]))

## 97.5 % 2.5 %

## 1.005629 1.015156

The estimated odds ratio for F. XIII and it’s confidence interval match the results
reported on above very closely.

The model was furthermore estimated using mode of delivery as stratum. Thus, two
separate models for vaginal delivery and Cesarean section were estimated:

m_MBL_C <- Colr(as.formula(paste("MBLsurv | VCmode ~ VCmode:(", fm, ")")),

data = blood, bounds = c(0, Inf), support = c(250, 2000))

summary(m_MBL_C)

##

## (Stratified) Continuous Outcome Logistic Regression

##

## Call:

## Colr(formula = as.formula(paste("MBLsurv | VCmode ~ VCmode:(",

## fm, ")")), data = blood, bounds = c(0, Inf), support = c(250,

## 2000))

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## VCmodeVaginal delivery:Hb.prae -0.006166 0.006618 -0.932 0.35151

## VCmodeCesarean Sectio:Hb.prae 0.006272 0.006678 0.939 0.34762

## VCmodeVaginal delivery:F1.prae 0.010058 0.087278 0.115 0.90825

## VCmodeCesarean Sectio:F1.prae -0.146799 0.079988 -1.835 0.06647 .

## VCmodeVaginal delivery:F2.prae 0.002206 0.004099 0.538 0.59044

## VCmodeCesarean Sectio:F2.prae 0.010655 0.004225 2.522 0.01167 *

## VCmodeVaginal delivery:F13.Akt.prae 0.009655 0.003327 2.902 0.00371 **

## VCmodeCesarean Sectio:F13.Akt.prae 0.007574 0.003360 2.254 0.02420 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Log-Likelihood:

## -3566.539 (df = 22)

## Likelihood-ratio Test: Chisq = 27.23977 on 8 degrees of freedom; p = 0.0006426

logLik(m_MBL_C)

## 'log Lik.' -3566.539 (df=22)

For F. XIII, the estimated log-odds ratios and the corresponding standard errors are
roughly the same for both delivery modes and are very close to the unstratified analysis.
The effect for F. II seems only present in Cesarean sections.

The sample size planning was performed under choice-based sampling. The difference
in prepartum F. XIII was used as effect measure for comparing two groups of patients
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Figure 3: Prevalence curve of PPH (defined as MBL ≥ 500mL) as a function of prepartum
F. XIII for a hypothetical subject with prepartum hemoglobin 127 g/l, prepartum F. I
4.5 g/l, and prepartum F.II 128%. The blue area represents a 95% confidence band.
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(PPH: postpartum hemorrhage, defined as measured blood loss larger than 500 ml). The
one-way analysis of variance matching the sample size planning is

blood$PPH <- factor(blood$MBL >= 500, levels = c(FALSE, TRUE),

labels = c("no", "yes"))

summary(m_PPH <- lm(F13.Akt.prae ~ PPH, data = blood))

##

## Call:

## lm(formula = F13.Akt.prae ~ PPH, data = blood)

##

## Residuals:

## Min 1Q Median 3Q Max

## -84.981 -14.954 -2.954 15.019 78.019

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 99.9810 0.8174 122.321 < 2e-16 ***

## PPHyes -4.0274 1.2230 -3.293 0.00102 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 21.95 on 1301 degrees of freedom

## (6 observations deleted due to missingness)

## Multiple R-squared: 0.008266,Adjusted R-squared: 0.007504

## F-statistic: 10.84 on 1 and 1301 DF, p-value: 0.001018

confint(m_PPH)["PPHyes",]

## 2.5 % 97.5 %

## -6.426666 -1.628115

and a corresponding Wilcoxon rank sum test reports

wilcox_test(F13.Akt.prae ~ PPH, data = blood,

distribution = approximate(10000), conf.int = TRUE)

##

## Approximative Wilcoxon-Mann-Whitney Test

##

## data: F13.Akt.prae by PPH (no, yes)

## Z = 3.4999, p-value = 8e-04

## alternative hypothesis: true mu is not equal to 0

## 95 percent confidence interval:

## 2 7

## sample estimates:

## difference in location

## 4
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Patients suffering PPH had, on average, four units less F. XIII compared to patients
with normal blood loss. It should be noted that logistic regression allows to estimate odds
ratios under choice-based sampling, therefore, the analysis by continuous outcome logistic
regression is also appropriate under the design applied for sample size planning.

### Tobit model

tll <- logLik(t_MBL <- Lm(as.formula(paste("MBLsurv ~ ", fm)),

data = blood))

### distribution regression

drll <- logLik(dr_MBL <- Colr(as.formula(paste("MBLsurv | ", fm, "~ 1")),

data = blood, bounds = c(0, Inf),

support = c(250, 2000)))

Continuous outcome logistic regression for measured blood loss was evaluated by means
of comparison against a Tobit model (normal linear regression for interval-censored re-
sponse), distribution regression (Foresi and Peracchi, 1995; Chernozhukov et al., 2013,
simultaneous estimation of all possible binary logistic regression models without constant
log-odds ratio regression coefficients) and a selection of binary logistic regression models
using the cut-off points 500 ml, 750 ml, and 1000 ml for measured blood loss. The in-
sample log-likelihood for the continuous outcome logistic regression model (−3696.599) is
much larger than the log-likelihood of the Tobit model (−4068.522) and almost equivalent
to the log-likelihood (−3691.416) of the much more flexible distribution regression model.
The response-varying effects from this distribution regression model are contrasted with
the (response-constant) odds ratios from the continuous outcome logistic regression in
Figure 4. In the relevant domain, the response-varying effects are covered by the confi-
dence intervals for the response-constant effects. In summary, continuous outcome logistic
regression seems a fair and interpretable compromise between the simpler Tobit model
assuming conditional normality for measured blood loss and the distribution regression
model allowing non-constant regression coefficients.

The estimated odds ratios for prepartal F. II and F. XIII and also roughly the corre-
sponding confidence intervals can be reproduced by looking at binary logistic regression
models for selected cut-off points in measured blood loss. The odds ratios and corre-
sponding confidence intervals for F. XIII are roughly constant across the different cut-off
points, as could be expected from the results of distribution regression (Table 2).
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Cut-off Parameter OR lower upper p-value
All Hb.prae 1.010 1.001 1.019 0.03704

F1.prae 0.941 0.838 1.057 0.30559
F2.prae 1.008 1.002 1.014 0.00843
F13.Akt.prae 1.011 1.006 1.016 < 0.001

500 Hb.prae 1.007 0.996 1.018 0.19906
F1.prae 0.921 0.807 1.051 0.22004
F2.prae 1.009 1.002 1.016 0.01279
F13.Akt.prae 1.009 1.003 1.014 0.00245

750 Hb.prae 1.003 0.989 1.018 0.65713
F1.prae 0.867 0.725 1.041 0.12179
F2.prae 1.016 1.006 1.026 0.00116
F13.Akt.prae 1.012 1.004 1.020 0.00446

1000 Hb.prae 0.999 0.980 1.019 0.95076
F1.prae 0.904 0.712 1.159 0.41560
F2.prae 1.004 0.991 1.016 0.57442
F13.Akt.prae 1.010 0.999 1.021 0.06605

Table 2: Odds ratios and corresponding confidence intervals for prepartal blood param-
eters. “All” refers to all cut-off points simultaneously via continuous outcome logistic
regression.

Parameter OR lower upper p-value
VCmodeVaginal delivery:Hb.prae 0.994 0.981 1.007 0.35151
VCmodeCesarean Sectio:Hb.prae 1.006 0.993 1.020 0.34762
VCmodeVaginal delivery:F1.prae 1.010 0.851 1.199 0.90825
VCmodeCesarean Sectio:F1.prae 0.863 0.738 1.010 0.06647
VCmodeVaginal delivery:F2.prae 1.002 0.994 1.010 0.59044
VCmodeCesarean Sectio:F2.prae 1.011 1.002 1.019 0.01167
VCmodeVaginal delivery:F13.Akt.prae 1.010 1.003 1.016 0.00371
VCmodeCesarean Sectio:F13.Akt.prae 1.008 1.001 1.014 0.02420

Table 3: Odds ratios and corresponding confidence intervals for prepartal blood parame-
ters, stratified by mode of delivery.
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Figure 4: Measured blood loss: Response-varying regression coefficients (solid curves, on
the odds ratio scale) in the distribution regression model, separately for each prepartal
blood parameter. For a given cut-off value y on the x-axis, the line corresponds to the
odds ratio in a binary logistic regression model for the outcome “measured blood loss
≤ y”. The dashed lines represent the response-constant regression coefficients (on the
exp-scale) from the continuous outcome logistic regression model, the grey area depicts
the corresponding confidence interval. The thick red line corresponds to an absent effect
(odds ratio one).
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Figure 5: Measured blood loss: Subgroup model for measured blood loss based on prepar-
tal available information.

2.4 Results: Identification of Effect Modifiers

In the second step of the analysis, the dependency of the regression coefficients for prepar-
tal blood parameters on two sets of external variables were analysed and are given in
Figures 5 and 7. Figure 5 depicts the model built on 8 prepartal available variables
(gestational age, maternal age, multiparity, body mass index, multiple fetus pregnancy,
neonatal weight, induction of labor, and chorioamnionitis). The model in Figure 7 uses
all 24 prepartal and postpartal available variables (number of colloids, spontaneous deliv-
ery, vacuum delivery, elective cesarean delivery, unplanned cesarean delivery, emergency
cesarean delivery, gestational age, maternal age, multiparity, body mass index, duration
of second stage labor, multiple fetus pregnancy, induction of labor, induction of labor >
48 hours, chorioamnionitis, neonatal weight, uterine rupture, uterine atony, retained pla-
centa, retained placental material, morbidly adherent placenta, placenta previa, bleeding
from laceration, and placental abruption). The model in Figure 5 indicates that higher
values of F. XIII correspond to lower blood loss (odds ratio > 1 and thus a distribution
move to the left) in subgroups 5 and 6. The effect seems lower for twin births (subgroup 7)
and mothers with low body mass index (subgroup 3). Using all prepartal and postpartal
variables in Figure 7, the effect of F. XIII is most pronounced in subgroup 4 (spontaneous
delivery and not colloids).

From the subgroup model presented in Figure 5, the probability of measured blood loss
> 500 ml was estimated for each of the four subgroups with a corresponding confidence
interval effects.

## Subgroup Estimate upr lwr

## 1 3 27.59444 23.00023 32.71641

## 2 5 26.26938 21.01860 32.29551

## 3 6 38.55259 35.43609 41.76588

## 4 7 75.44743 62.82150 84.82155

For measured blood loss > 750 ml, the probabilities change to
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## Subgroup Estimate upr lwr

## 1 3 8.255620 5.815348 11.59384

## 2 5 7.579202 4.900517 11.54435

## 3 6 14.483799 12.321616 16.95204

## 4 7 35.717697 24.322851 48.99473

and for measured blood loss > 1000 ml to

## Subgroup Estimate upr lwr

## 1 3 2.879609 1.623289 5.058244

## 2 5 3.346504 1.724261 6.395680

## 3 6 6.704618 5.248649 8.528120

## 4 7 14.270381 7.652079 25.059553

When a hypothetical increase of F. XIII by 50 was assumed, these probabilities reduced
to

## Subgroup Estimate upr lwr

## 1 3 19.35138 11.836096 30.01399

## 2 5 10.05711 5.151499 18.71256

## 3 6 30.59584 23.942955 38.16960

## 4 7 66.14726 32.861982 88.63674

for measured blood loss > 500, to

## Subgroup Estimate upr lwr

## 1 3 5.361702 2.871931 9.792324

## 2 5 2.509125 1.098733 5.626964

## 3 6 10.634801 7.622620 14.648537

## 4 7 26.107388 7.926699 59.183570

for measured blood loss > 750, and to

## Subgroup Estimate upr lwr

## 1 3 1.832551 0.8380568 3.960050

## 2 5 1.074941 0.4097671 2.789646

## 3 6 4.806701 3.2436692 7.067895

## 4 7 9.571507 2.3276533 31.978075

for measured blood loss> 1000. These values can be used as potential treatment effects
in the design of a prospective randomised clinical trial. The corresponding conditional
distribution functions illustrating this hypothetical treatment effect are given in Figure 6.
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Figure 6: Measured blood loss: Conditional distribution of measured blood loss in the
subgroups given in Figure 5 for original F. XIII measurements (blue lines) and under
hypothetical treatment (yellow lines). Vertical grey lines indicate 500, 750, and 1000 ml
measured blood loss.
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Figure 7: Measured blood loss: Subgroup model for measured blood loss based on prepar-
tal and postpartal available information.
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Reproducibility (Supplementary Material)

The results are reproducible by running the R transcript file blood loss report.R in the
following environment:

## R version 4.2.2 Patched (2022-11-03 r83262)

## Platform: x86_64-pc-linux-gnu (64-bit)

## Running under: Debian GNU/Linux 11 (bullseye)

##

## Matrix products: default

## BLAS: /srv/R/R-patched/build.22-11-05/lib/libRblas.so

## LAPACK: /srv/R/R-patched/build.22-11-05/lib/libRlapack.so

##

## locale:

## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C

## [9] LC_ADDRESS=C LC_TELEPHONE=C

## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##

## attached base packages:

## [1] grid stats graphics grDevices utils datasets methods

## [8] base

##

## other attached packages:

## [1] colorspace_2.0-4 vcd_1.4-10 gridExtra_2.3 multcomp_1.4-20

## [5] TH.data_1.1-2 MASS_7.3-58.1 ATR_0.1-1 coin_1.4-3

## [9] rms_6.3-0 SparseM_1.81 Hmisc_4.7-1 ggplot2_3.4.0

## [13] Formula_1.2-4 survival_3.4-0 lattice_0.20-45 trtf_0.4-1

## [17] tram_0.8-0 partykit_1.2-16 mvtnorm_1.1-3 libcoin_1.0-10

## [21] mlt_1.4-3 basefun_1.1-3 variables_1.1-1

##

## loaded via a namespace (and not attached):

## [1] splines_4.2.2 assertthat_0.2.1 highr_0.9

## [4] stats4_4.2.2 latticeExtra_0.6-30 numDeriv_2020.2-1

## [7] pillar_1.8.1 backports_1.4.1 quantreg_5.94

## [10] glue_1.6.2 quadprog_1.5-8 alabama_2022.4-1

## [13] digest_0.6.30 RColorBrewer_1.1-3 checkmate_2.1.0

## [16] sandwich_3.0-2 htmltools_0.5.3 Matrix_1.5-1

## [19] pkgconfig_2.0.3 scales_1.2.1 jpeg_0.1-9

## [22] MatrixModels_0.5-1 tibble_3.1.8 htmlTable_2.4.1

## [25] generics_0.1.3 withr_2.5.0 nnet_7.3-18

## [28] cli_3.4.1 magrittr_2.0.3 polspline_1.1.20

## [31] evaluate_0.18 fansi_1.0.3 nlme_3.1-160

## [34] foreign_0.8-83 tools_4.2.2 data.table_1.14.4

## [37] matrixStats_0.62.0 lifecycle_1.0.3 stringr_1.4.1

## [40] munsell_0.5.0 cluster_2.1.4 orthopolynom_1.0-6.1

## [43] compiler_4.2.2 inum_1.0-4 rlang_1.0.6
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## [46] coneproj_1.16 rstudioapi_0.14 htmlwidgets_1.5.4

## [49] base64enc_0.1-3 gtable_0.3.1 codetools_0.2-18

## [52] DBI_1.1.3 BB_2019.10-1 polynom_1.4-1

## [55] R6_2.5.1 zoo_1.8-11 knitr_1.40

## [58] dplyr_1.0.10 fastmap_1.1.0 utf8_1.2.2

## [61] modeltools_0.2-23 stringi_1.7.8 parallel_4.2.2

## [64] Rcpp_1.0.9 vctrs_0.5.0 rpart_4.1.19

## [67] png_0.1-7 lmtest_0.9-40 tidyselect_1.2.0

## [70] xfun_0.34
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