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Abstract

This manual has a twofold aim: to present the WeightedCluster library
and offer a step-by-step guide to creating typologies of sequences for the
social sciences. In particular, this library makes it possible to represent
graphically the results of a hierarchical cluster analysis, to group identical
sequences in order to analyse a larger number of sequences, to compute
a set of measures of partition quality and also an optimized PAM (Par-
titioning Around Medoids) algorithm taking account of weightings. The
library also offers procedures to facilitate the choice of a particular clus-
tering solution and to choose the optimal number of groups.

In addition to the methods, we also discuss the building of typologies
of sequences in the social sciences and the assumptions underlying this
operation. In particular we clarify the place that should be given to the
creation of typologies in the analysis of sequences. We thus show that
these methods offer an important descriptive point of view on sequences
by bringing to light recurrent patterns. However, they should not be used
in a confirmatory analysis, since they can point to misleading conclusions.
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1. Introduction
This manual has a twofold aim. It presents the functionalities offered by the
WeightedCluster library for the construction and validation of weighted data
clustering in R. At the same time, throughout this manual, we apply the meth-
ods presented to the analysis of sequences in the social sciences, so that it is
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also a step-by-step guide to building typologies of sequences. We also discuss
some sociological implications and assumptions underlying these analyses.
In a general way, cluster analysis aims to construct a grouping of a set of objects
in such a way that the groups obtained are as homogeneous as possible and as
different from one another as possible. There are many different methods for
performing this task, whose pertinence depends in particular on the objects
analysed. The methods presented in this manual and available in the Weight-
edCluster library are based on a measure of dissimilarity between the objects,
which makes it possible to compare two objects by quantifying their similarity.
We present two stages of cluster analysis based on dissimilarities: first the algo-
rithms for grouping the objects and then the measure of the quality of the results
obtained. This second stage is essential, since all the cluster analyses presented
produce results, whether they are pertinent or not (Levine 2000). These mea-
sures also provide valuable help in choosing the best grouping from among the
solutions resulting from different algorithms or in selecting the optimal number
of groups. To do so, we use here the methods offered by the WeightedClus-
ter library, such as a highly optimized PAM (Partitioning Around Medoids)
algorithm or computation and visualization of the quality of a set of clustering
solutions.
The particularity of the WeightedCluster library is that it takes account of the
weighting of the observations in the two phases of the analysis previously de-
scribed. There are at least two situations in which the use of weighting proves
indispensable. Firstly, survey data are often weighted to correct representa-
tivity bias. In such cases, it is essential to use the weights in the clustering
procedures so that the results are not biased. Secondly, weighting makes it pos-
sible to group the identical cases, which considerably reduces the memory and
computing time used. Section A presents in detail the functionalities offered by
the WeightedCluster library to automate this grouping. The WeightedCluster
library offers functions to include weightings only for analyses for which, so far
as we know, there are currently no other libraries which already do it. If this
were to be the case, as for the hierarchical clustering procedures, we present
the existing solutions.
As previously mentioned, this manual also aims to be a step-by-step guide to
constructing of typologies of trajectories in R. As such, it is intended for a wide
audience, and for this reason the most technical or most advanced parts are
reserved for an appendix. 1 This approach will also lead us to discuss the
sociological implications and assumptions underlying cluster analysis.
In this manual, we illustrate the methods presented with the aid of data from the
study by McVicar and Anyadike-Danes (2002), available in TraMineR (Gabad-
inho et al. 2011), which will enable the reader to reproduce the set of analyses
presented. These data describe the transition from school to work of young
people in Northern Ireland, in the form of sequences of monthly statuses. The

1However, a knowledge of the basic operations of sequence analysis is assumed. If this is
not the case, an introduction to their practical implementation with TraMineR is available in
Gabadinho et al. (2011).
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original aim of the study was to “identify young people ‘at-risk’ at age 16
and characterize their post-school career trajectories”. This data set provides
weights to correct representativity bias.
This manual is organized as follows. We start by presenting the theoretical
issues raised by the construction of sequence typologies in the social sciences
before turning to the cluster analysis methods as such. We then briefly summa-
rize the different stages of cluster analysis before presenting several clustering
algorithms available in R for weighted data. We then present several measures
of the quality of a clustering and the main uses that can be made of them.
Finally, we discuss the issues in the interpretation of cluster analysis and the
risks that are entailed when one analyses the links between types of trajectories
and explanatory factors, which is a common practice in the social sciences.

2. Typology of sequences in the social sciences

The creation of a typology is the method most used to analyse sequences (Hol-
lister 2009; Aisenbrey and Fasang 2010; Abbott and Tsay 2000). This procedure
aims to identify the recurrent patterns in the sequences or, in other words, the
typical successions of states through which the trajectories run. The individual
sequences are distinguished from one another by a multitude of small differ-
ences. The construction of a typology of sequences aims to efface these small
differences so as to identify types of trajectories that are homogeneous and
distinct from one another.
This analysis seeks to bring out recurrent patterns and/or “ideal-typical se-
quences” (Abbott and Hrycak 1990). These patterns can also be interpreted
as interdependences between different moments in the trajectory. The search
for such patterns is thus an important question in several issues in the social
sciences (Abbott 1995). In particular it makes it possible to bring to light the
legal, economic or social constraints that shape the construction of individual
life courses. As Abbott and Hrycak (1990) note, while typical sequences can
result from constraints, these typical sequences can also act on reality by serv-
ing as models for the actors, who anticipate their own future. These different
possibilities of interpretation make the creation of typologies a powerful tool.
In the study by McVicar and Anyadike-Danes (2002) for example, such an anal-
ysis should make it possible to identify the successions of states that lead to
“at-risk” situations i.e. ones marked by a high rate of unemployment.
This grouping procedure is based on a simplification of the data. It thus offers
a descriptive and exploratory point of view on the trajectories. By simplifying
the information, one can identify the main characteristics and patterns of the
sequences. However, there is a risk that this simplification is unjustified and
does not correspond to the reality of the data. In other words, it is possible
that the types identified are not clearly separated from one another or that
they are not sufficiently homogeneous. This risk has often been neglected in
the literature. As Levine (2000) in particular points out, all cluster analyses
produce a result, whether it is pertinent or not. It is therefore always possible
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to interpret the results and make a theory out of them which often declares
itself “without preliminary assumptions” or “flowing from the data”, although
this typology may also be the produce of a statistical artefact.
According to Shalizi (2009), the pertinence of a typology depends on three
conditions. First, and this is the most important, the typology must not be
dependent on the sampling, which means it must be generalizable to other
observations. Secondly, a typology should extend to other properties. Finally,
the typology obtained should also be grounded by a theory of the domain
analysed. Shalizi (2009) gives two examples to illustrate his remarks. The
classification of animal species, created on the basis of physical characteristics,
also applies to other characteristics such as the song of a bird. By contrast,
the classification of the stars into constellations made it possible to construct
ungrounded theories.
For all the previously mentioned reasons, the WeightedCluster package pro-
vides several indexes to measure the quality of a partition obtained using an
automatic grouping procedure. In our view, the use of such measures is an
essential stage in validating the results and, in a more general way, of making
the results of sequence analysis using clustering more credible.
Having presented the theoretical issues around cluster analysis, we turn to the
practice, by presenting the different stages of cluster analysis.

3. Installation and loading
To use the WeightedCluster library, it has to be installed and loaded. It only
has to be installed once, but it has to be reloaded with the library command
each time R is started. These two stages are performed in the following way:

R> install.packages("WeightedCluster")
R> library(WeightedCluster)

4. Stages of cluster analysis
In a general way, cluster analysis takes place in four stages which we shall exam-
ine in more detail. First the dissimilarities are computed. These are then used
to group similar sequences into types that are as homogeneous as possible and
as different as possible from one another. Generally several different algorithms
and different numbers of groups are tested. For each of the groupings obtained,
the quality of the clustering is then computed. These measures make it possible
to guide the choice of a particular solution and validate it. Finally, the results
of the analysis are interpreted and, as appropriate, the association between the
grouping obtained and other variables of interest is computed.
In this manual, we shall discuss the last three stages of the analysis. We of-
fer here only an introduction to computation of the dissimilarities between
sequences. In particular it should be noted that a dissimilarity measure is a
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quantification of the distance between two sequences or, more generally, be-
tween two objects. This quantification then makes it possible to compare the
sequences. In cluster analysis for example, this information is necessary in order
to group the most similar sequences. A matrix of dissimilarities containing the
set of dissimilarities two by two, or in other words the quantification of all the
possible comparisons, is generally used.
The choice of the measure of dissimilarity used to quantify the differences be-
tween sequences is an important question, but beyond the scope of this manual.
Several articles address this issue (Aisenbrey and Fasang 2010; Hollister 2009;
Lesnard 2010). Here, we use the optimal matching distance adopting the costs
used in the original article by McVicar and Anyadike-Danes (2002).
In R, the distances between state sequences can be computed with the aid of
the TraMineR library (Gabadinho et al. 2011). To compute these distances,
one first has to create a state sequence object using the seqdef function. The
distances are then computed with the seqdist function. Gabadinho et al.
(2011) presents these different stages in detail.
Here, we start by loading the example data set with the data command. We
then build the sequence object by specifying the columns containing the data (17
to 86) and the weighting of the observations. The seqdist function computes
the matrix of distances between sequences.

R> data(mvad)
R> mvad.alphabet <- c("employment", "FE", "HE", "joblessness", "school",

"training")
R> mvad.labels <- c("Employment", "Further Education", "Higher Education",

"Joblessness", "School", "Training")
R> mvad.scodes <- c("EM", "FE", "HE", "JL", "SC", "TR")
R> mvadseq <- seqdef(mvad[, 17:86], alphabet = mvad.alphabet,

states = mvad.scodes, labels = mvad.labels,
weights = mvad$weight, xtstep = 6)

R> ## Defining the custom cost matrix
R> subm.custom <- matrix(

c(0, 1, 1, 2, 1, 1,
1, 0, 1, 2, 1, 2,
1, 1, 0, 3, 1, 2,
2, 2, 3, 0, 3, 1,
1, 1, 1, 3, 0, 2,
1, 2, 2, 1, 2, 0),

nrow = 6, ncol = 6, byrow = TRUE)
R> ## Computing the OM dissimilarities
R> mvaddist <- seqdist(mvadseq, method = "OM", indel = 1.5, sm = subm.custom)

The remainder of this manual covers the three following stages. We shall first
discuss the clustering methods available for the weighted data. We shall then
present the measures of the quality of a clustering offered by the WeightedClus-
ter library. These measures will enable us to choose a particular solution and
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measure its validity. Finally, we shall discuss the problems of interpreting the
results of cluster analysis and computing the relationship between typologies
and other variables of interest.

5. Clustering
There are many different clustering algorithms. We present here some methods
derived from two different logics: hierarchical clustering methods and those of
partitioning into a predefined number of groups. We conclude by discussing the
possible interactions between these types of algorithms.

5.1. Hierarchical clustering

We present here the procedures for hierarchical agglomerative clustering, which
function as follows. One starts out from the observations, each of them being
considered as a group. On each iteration, the two closest groups (or initially
observations) are grouped, until all the observations form a single group. The
agglomeration schedule, i.e. the succession of groupings performed, represents
the clustering procedure in the form of a tree which is called a dendrogram.
When the agglomeration schedule has been constructed, one selects the number
of groups. The partition selected is obtained by “cutting” the grouping tree at
the corresponding level.2

In R, the agglomeration schedule (the succession of groupings performed) is
created with the hclust function.3 This function takes the following param-
eters: the distance matrix (as a dist object), the method (here “Ward”, we
shall return to this) and the weight vector members.

R> wardCluster <- hclust(as.dist(mvaddist), method="ward", members=mvad$weight)

When the agglomeration schedule has been created, the final stages of this
schedule can be visualized with the aid of the WeightedCluster library. This
is done in two stages. One starts by constructing a tree of sequences from the
agglomerative schema with the command as.seqtree. This function takes the
following arguments: the clustering procedure (wardCluster in our case), the
sequence object (seqdata argument), the distance matrix (diss argument) and
maximum number of groupings to be represented (ncluster).

R> wardTree <- as.seqtree(wardCluster, seqdata=mvadseq, diss=mvaddist, ncluster=6)

Once the tree is constructed, the seqtreedisplay function of the TraMineR
library (Studer et al. 2011) makes it possible to represent it graphically. The free

2There are also so-called descendant (or divisive) procedures which run in the same way, but
in the opposite direction. Instead of starting out from the observations that are regarded as
groups, the procedure divides one of the groups at each step until each observation corresponds
to a group. An algorithm is available in R with the diana function of the cluster library.
Everything presented here is also compatible with the object returned by this function.

3Other possibilities exist.
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GraphViz software (Gansner and North 1999) must be installed and accessible
for the function to work properly.4 The option showdepth=TRUE displays the
levels of the groupings on the right of the graph.

R> seqtreedisplay(wardTree, type="d", border=NA, showdepth=TRUE)

This graphic presents the result of this procedure and makes it possible to vi-
sualize the grouping logics of the sequences. The first distinction, considered to
be the most important, separates the individuals who go into tertiary education
from the others. The distinctions that are made when one moves from four to
five groups enable us, however, to bring to light the fact that this group amalga-
mates two logics: those who go into “Higher Education” and those who go into
“Further Education”. This graphic provides an important aid for identifying
the distinctions pertinent for the analysis. Thus, if one opts for a four-group
solution, no further distinctions will be made between between the two logics
(“Higher Education” and “Further Education”). By contrast, the distinction
into five groups enables this to be identified.
This example illustrates the simplification of the data effected by the clustering
procedures. Opting for only four groups, one amalgamates two logics which
may (or may not) be pertinent for the analysis. It should be noted that in
opting for only five groups, one amalgamates the distinctions that are made at
a lower level. One is thus always performing a simplification.
To obtain a grouping in a particular number of groups, one cuts the tree at a
given level. This means that one keeps all the terminal nodes if the growing of

4The program can be downloaded from http://www.graphviz.org/.

http://www.graphviz.org/
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the tree is stopped at the level presented on the right. In R, this information is
recovered with the aid of the cutree function. For example, to use the grouping
in four distinct classes:

R> clust4 <- cutree(wardCluster, k=4)

This information can then be used in other analyses, for example, to represent
the types obtained with the aid of a chronogram. Not surprisingly, the graphics
obtained correspond to the terminal nodes of the tree at level four.

R> seqdplot(mvadseq, group=clust4, border=NA)
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As previously mentioned, the hclust function offers seven different hierarchical
algorithms which are specified with the argument method. The fastcluster
library provides an optimized version of this function (Müllner 2011). The
hierarchical algorithms diana (divisive algorithm, see Kaufman and Rousseeuw
1990) and beta-flexible clustering with the agnes function are available in the
cluster library (Maechler et al. 2005).5 Table 1 lists these algorithms, giving the
name of the function to be used, the allowance for weightings (“Indep” means
that the algorithm is insensitive to weightings) and the interpretation of the
clustering logic. A more detailed presentation of these algorithms is available
in Müllner (2011) and Kaufman and Rousseeuw (1990).
In their article, Milligan and Cooper (1987) examine the results of different
simulations in order to evaluate the performances of some of these algorithms.
It should be noted that these simulations were carried out with numerical data
and the Euclidian distance measure. The extension of these results to other
types of distances is subject to debate. They thus report rather poor results
for the “single”, “complete”, “centroid” and “median” methods. The “Ward”

5If these functions are used, it is necessary to specify the argument diss=TRUE, in order
for the algorithm to use the distance matrix passed as an argument.
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Table 1: Hierarchical clustering algorithms.

Name Function Weight Interpretation and notes.

single hclust Indep Merging of the groups with closest observations.

complete hclust Indep Minimization of diameter of each new group (very sensitive
to atypical data).

average (or UPGMA) hclust Yes Average of distances.

McQuitty (or WPGMA) hclust Indep Depends on previous mergings.

centroid hclust Yes Minimization of distances between medoids.

median hclust Indep Depends on previous mergings.

ward hclust Yes Minimization of residual variance.

beta-flexible agnes No For a value of β close to −0.25, set the argument
par.method=0.625.

method generally performs fairly well except in the presence of outliers which
bias the results. They report very variable results for the “average” method.
Finally, the “beta-flexible” method with a value of beta close to −0.25 gives
good results in the presence of various forms of error in the data (Milligan
1989). The best results are obtained with the “flexible UPGMA” algorithm,
which is not currently available in R (Belbin et al. 1992).
Hierarchical procedures are open to several criticisms. First, and most im-
portantly, the merging of two groups is done by maximizing a local criterion.
These procedures optimize a local criterion, i.e. the loss of information due to
a grouping is estimated locally. These local choices can lead to great differences
at higher levels and it is not guaranteed that a local choice is the best one from
a global point of view. In other words, it can often happen that a good choice at
the local level leads to mediocre results at a higher level of grouping. Secondly,
agglomerative procedures are non-deterministic, particularly when the distance
measure takes only a few different values, giving rise to ties between which one
has to decide; in particular this can be the case with optimal matching or the
Hamming distance. Although a particular version of this algorithm generally
produces the same dendrogram in each analysis6, several versions of this same
algorithm can lead to divergent results. Moreover, this occurrence can penalize
the procedure, which has no criterion to make a choice (Fernández and Gómez
2008). We now present the PAM algorithm, which has the advantage of seeking
to maximize a global criterion.

5.2. Partitioning Around Medoids

The PAM (for “Partitioning Around Medoids”) algorithm follows a different
logic from hierarchical algorithms (Kaufman and Rousseeuw 1990). It aims to

6The algorithms generally make a choice which depends on the order of the observations,
which makes it replicable so long as the order remains unchanged.
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obtain the best partitioning of a data set into a predefined number k of groups.
Compared to the other algorithms presented, this algorithm has the advantage
of maximizing a global criterion and not only a local criterion.

The aim of the algorithm is to identify the k best representatives of groups,
called medoids. More precisely, a medoid is defined as the observation of a group
having the smallest weighted sum of distances from the other observations de
this group. This algorithm thus seeks to minimize the weighted sum of distances
from the medoid.

In brief, the functioning of this algorithm can be described in two phases. In
a first stage, one initializes the algorithm, seeking the observations that most
diminish the weighted sum of the distances from the existing medoids, hav-
ing chosen the medoid from the whole data set at the start. When the initial
solution has been constructed, the second phase of the algorithm, called “swap-
ping”, starts. For each observation, one computes the potential gain that would
be realized if one of the existing medoids were replaced this observation. The
gain is computed at the global level and in terms of the weighted distances from
the closest medoids. The medoid is then replaced by the observation that leads
to the greatest possible gain. These operations are repeated until it is no longer
possible to improve the current solution.

The algorithm is available in the library R cluster (Maechler et al. 2005; Struyf
et al. 1997), but does not make it possible to use weighted data. The wcKMedoids
function in the WeightedCluster library, partly based on the code available in
the cluster library, takes weightings into account and also implements the op-
timizations suggested by Reynolds et al. (2006), which make it faster. This
function also consumes only half as much memory, which makes it adequate for
analysing very large data sets. Annex B presents the gains in computing time
in more detail.

R> pamclust4 <- wcKMedoids(mvaddist, k=4, weights=mvad$weight)

The clustering element contains the cluster membership of each observation.
This information can then be used, for example to represent the sequences with
the aid of a chronogram.

R> seqdplot(mvadseq, group=pamclust4$clustering, border=NA)
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The number assigned to each group corresponds to the index of the medoid
of this group. The medoids can thus be recovered by using the command
unique(pamclust4$clustering). The following command uses this possibility
to display the medoid sequences of each group:

R> print(mvadseq[unique(pamclust4$clustering), ], format="SPS")

Sequence
66 (TR,22)-(EM,48)
607 (SC,25)-(HE,45)
467 (SC,10)-(FE,12)-(EM,48)
641 (TR,22)-(JL,48)

The PAM algorithm has several disadvantages. First, it is necessary to specify
in advance the number k of groups. When testing several sizes k of partition,
one cannot be sure that the types obtained interlock as in the case of hierarchical
procedures, and the computing time can be correspondingly long. Secondly, the
PAM algorithm always creates “spherical” groups7 centred on their medoid, and
this structure does not necessarily correspond to the reality of the data.8 But
most importantly, the algorithm is dependent on the initial choice of medoids,
which is not always optimal.

5.3. Combining the algorithms

The PAM algorithm has the advantage of optimizing a global criterion, but the
algorithm is dependent on the initial choice of medoids, which is not always opti-
mal. To overcome this limitation, we can try to initialize the PAM algorithm us-
ing the result of the hierarchical clustering procedure. To do this, the clustering

7Which is also the case for the “Ward” criterion in hierarchical procedures.
8For instance, the algorithm might fail to recognize the true structure if the data are

organized in squares.
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obtained by the hierarchical method (the argument initialclust=wardCluster)
is specified as the starting point of the wcKMedoids function (or the wcKMedRange
function, see section 6.3).

R> pamwardclust4 <- wcKMedoids(mvaddist, k=4, weights=mvad$weight, initialclust=wardCluster)

This leads here to a slightly different solution, but with better quality.

R> seqdplot(mvadseq, group=pamwardclust4$clustering, border=NA)
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We have presented several types of cluster analyses, which have led us to dif-
ferent solutions. How does one choose among these solutions? This question
is all the more important since we could also have selected different numbers
of groups for each procedure, which would have led us to a large number of
possibilities. The measures of quality of a partition that we now present assist
in this choice by offering a basis for comparing these different solutions.

6. Measuring the quality of a partition
Measures of the quality of a partition have two objectives. First, some of them
give an idea of the statistical quality of the partition. Secondly, these measures
assist in the choice of the best partition from a statistical standpoint. They are
a valuable aid in selecting the number of groups or the best algorithm.

6.1. Presentation of measures

The WeightedCluster library offers several measures of partition quality, which
are listed in Table 2. The choice of these measures is mainly inspired by Hennig
and Liao (2010), together with the “C-index” which figured among the best in-
dexes according to Milligan and Cooper (1985). The presentation we make here
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is centred on the concepts. The interested reader can however refer to Annex C,
which presents the mathematical details of these measures and the adjustments
made to take account of the weighting of the observations. Alongside the names
of the quality measures, Table 2 presents their main characteristics with the aid
of the following information:

• Abrv: abbreviation used in the WeightedCluster library.

• Range: interval of the possible values.

• Min/Max: Does a good partition minimize or maximize this measure?

• Interpretation of the value.

Table 2: Measures of the quality of a partition.

Name Abrv. Range Min/Max Interpretation

Point Biserial Correlation PBC [−1; 1] Max Measure of the capacity of the clustering to repro-
duce the distances.

Hubert’s Gamma HG [−1; 1] Max Measure of the capacity of the clustering to repro-
duce the distances (order of magnitude).

Hubert’s Somers’ D HGSD [−1; 1] Max Measure of the capacity of the clustering to re-
produce the distances (order of magnitude) taking
into account ties in distances.

Hubert’s C HC [0; 1] Min Gap between the partition obtained and the best
partition theoretically possible with this number
of groups and these distances.

Average Silhouette Width ASW [−1; 1] Max Coherence of assignments. High coherence in-
dicates high between-group distances and strong
within-group homogeneity.

Average Silhouette Width
(weighted)

ASWw [−1; 1] Max As previous, for floating point weights.

Calinski-Harabasz index CH [0; +∞[ Max Pseudo F computed from the distances.

Calinski-Harabasz index CHsq [0; +∞[ Max As previous, but using squared distances.

Pseudo R2 R2 [0; 1] Max Share of the discrepancy explained by the clus-
tering solution (only to compare partitions with
identical number of groups).

Pseudo R2 R2sq [0; 1] Max As previous, but using squared distances.

The first three measures, namely “Point Biserial Correlation” (Milligan and
Cooper 1985; Hennig and Liao 2010), “Hubert’s Gamma” and “Hubert’s Somers’
D” (Hubert and Arabie 1985), follow the same logic. They measure the capac-
ity of a partition of the data to reproduce the distance matrix. Whereas the
first measures the capacity to reproduce the exact value of the distances, the
other two are based on the concordances. This implies that, according to the
latter two indexes, a partition is valid if the distances between the groups are
greater than those within the groups. Technically, this capacity is measured by
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computing the association between the distance matrix and a second measure
of distance which takes the value 0 for observations that are in the same group
and 1 otherwise. Pearson’s correlation (“Point Biserial Correlation”), Goodman
and Kruskal’s Gamma (“Hubert’s Gamma”) or Somers’ D (“Hubert’s Somers’
D”) is used.
The “Hubert’s C” index compares the partition obtained with the best partition
that could have been obtained with this number of groups and this distance
matrix. In contrast to the other indexes, a small value indicates a good partition
of the data.
The Calinski-Harabasz indexes (Calinski and Harabasz 1974) are based on the
statistic F of the analysis of variance. This measure gave very good results
in the simulations of Milligan and Cooper (1985). However, its extension to
non Euclidean distance (such as optimal matching) is subject to debate. One
may question its pertinence if the measure of distance is Euclidian (or squared
Euclidean), in which case this measure amounts to using the statistic F on the
coordinates that can be associated with the observations, for example with a
principal coordinate analysis (Studer et al. 2011). For this case the Weight-
edCluster library provides this statistic using the squared distances when the
distance is Euclidian or the distance itself when the measure is already a squared
Euclidian distance, such as the Hamming distance.
R-squared calculates the share of discrepancy explained by a partition (Studer
et al. 2011). This measure is only pertinent to compare partitions containing
the same number of groups, since it does not penalize complexity.
Finally, the measure “Average Silhouette Width” proposed by Kaufman and
Rousseeuw (1990) is particularly interesting. It is based on the coherence of the
assignment of an observation to a given group, comparing the average weighted
distance of an observation from the other members of its group and its average
weighted distance from the closest group. A value is calculated for each obser-
vation, but more attention is paid to the average silhouette. If this is weak, it
means that the groups are not clearly separated or that the homogeneity of the
groups is low. Interestingly, Kaufman and Rousseeuw (1990) put forward orders
of magnitude for interpreting this measure, which are reproduced in Table 3.

Table 3: Orders of magnitude for interpreting the ASW measure

ASW Interpretation proposed
0.71 − 1.00 Strong structure identified.
0.51 − 0.70 Reasonable structure identified.
0.26 − 0.50 Structure is weak and could be artificial.

Try other algorithms.
≤ 0.25 No structure.

The original formulation of Kaufman and Rousseeuw (1990) supposes that one
weighting unit is equivalent to one observation. This is the case if the weighting
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results from aggregation (see Annex A) or if the data are not weighted. When
the weights aim at correcting representativity bias (as it is the case here), we
propose a variant of this measure called “ASWw”. The details are given in
Annex C.1. Generally, the measures gives very similar results, “ASWw” tends
to be a little higher.
These measures are calculated with the wcClusterQuality function. The value
returned by the function is a list comprising two elements. The stats element
contains the values of the measures of quality.

R> clustqual4 <- wcClusterQuality(mvaddist, clust4, weights=mvad$weight)
R> clustqual4$stats

PBC HG HGSD ASW ASWw CH R2 CHsq R2sq HC
0.43 0.57 0.57 0.23 0.23 140.43 0.37 282.38 0.54 0.19

According to the measure ASWw=0.23, the solution in four groups obtained using
the Ward criterion could be a statistical artefact, since it is less than 0.25.
The ASW element of the object clustqual4 contains the two variant of the
average silhouette of each group taken separately. According to this measure,
group 3 is particularly ill-defined since its average silhouette is negative.

R> clustqual4$ASW

ASW ASWw
1 0.577 0.580
2 0.230 0.232
3 -0.186 -0.182
4 0.434 0.440

6.2. Use the silhouette to represent the clusters

The silhouette can be computed separately for each sequence, which makes it
possible to identify the sequences most characteristic of a grouping (sequences
with a silhouette width close to one). The wcSilhouetteObs function computes
these values. In the example below, we use the silhouettes to order the sequences
in index plots.

R> sil <- wcSilhouetteObs(mvaddist, clust4, weights=mvad$weight, measure="ASWw")
R> seqIplot(mvadseq, group=clust4, sortv=sil)
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The most characteristic sequences of each cluster are represented at the top of
each graphic. According to the definition of the silhouette, the sequences we call
“characteristic” are those that are close to the centre of their group but distant
from the closest group. In group 1, for example, the characteristic sequence
is to enter employment after two years of apprenticeship. By contrast, the
sequences at the bottom of each graphic are poorly represented and/or poorly
assigned. Thus, in group 3, for example, the sequences “school – apprenticeship
– employment” are closer to another group (most likely no. 1) than their own
group.

6.3. Choice of a partition

The measures of the quality of a partition facilitate the choice of the best
partition among a set of possibilities. They can thus be used to identify the
algorithm that gives the best results. The wcKmedoids function used for PAM
directly computes these values, which are stored in the elements stats and
ASW as previously. The following code displays the quality measures for the
partition identified with the aid of PAM. This partition thus seems better than
that obtained with Ward.

R> pamclust4$stats

PBC HG HGSD ASW ASWw CH R2 CHsq R2sq HC
0.6 0.8 0.8 0.4 0.4 198.2 0.5 534.6 0.7 0.1

These measures also make it possible to compare partitions with different num-
bers of groups. Only pseudo R2 should not be used for this purpose, since it
does not penalize for complexity. Computing the quality of all these different
possibilities soon becomes laborious. The as.clustrange function in the Weight-
edCluster library automatically computes these values for a set of numbers of
groups derived from one hierarchical clustering procedure (wardCluster in our
example). This function requires the following arguments: the matrix of dissim-
ilarities (diss), the weightings (optional, weights argument) and the maximum
number of cluster that one wants to retain (ncluster). In the following exam-
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ple, we estimate the clustering quality for groupings in 2, 3, . . . , ncluster = 20
groups.

R> wardRange <- as.clustrange(wardCluster, diss=mvaddist, weights=mvad$weight, ncluster=20)
R> summary(wardRange, max.rank=2)

1. N groups 1. stat 2. N groups 2. stat
PBC 6 0.4740 2 0.4573
HG 20 0.8858 18 0.8614
HGSD 20 0.8842 18 0.8597
ASW 2 0.3725 16 0.3028
ASWw 2 0.3742 16 0.3165
CH 2 234.1011 3 164.0037
R2 20 0.6954 19 0.6805
CHsq 2 469.5188 3 326.5015
R2sq 20 0.8624 19 0.8432
HC 20 0.0556 18 0.0641

The summary function presents the best number of groups according to each
quality measure and the value of these statistics. The max.rank argument spec-
ifies the number of partitions to be displayed. According to the “Point Biserial
Correlation” (PBC) measure, partitioning in six groups is the best partition,
whereas for the “ASW” index a solution in two groups seems preferable. The
maximum value identified for this latter index indicates that we may be dealing
with statistical artefacts (see Table 3). It should be noted that pseudo-R2 and
its version based on the high squared distances will always give a maximum for
the highest number de groups, since these statistics cannot diminish.
The presentation offered by summary is useful for comparing the results of two
procedures (see below). However, it only presents two or three solutions and is
often useful to observe the changes in these measures so as to identify breaking
points and the partitions that offer the best compromise among several mea-
sures. The plot function associated with the object returned by as.clustrange
represents this change graphically. If required, the stat argument specifies the
list of measures to be displayed ("all" displays all of them).

R> plot(wardRange, stat=c("ASWw", "HG", "PBC", "HC"))
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The solution in six groups is here a local maximum for the measures “HC”,
“PBC” and “HG”, which makes it a good one if one wants to keep a limited
number of groups. The graphic is sometimes somewhat difficult to read, because
the average values of each measure differ. To palliate this problem, the argu-
ment norm="zscore" standardizes the values, which makes it easier to identify
the maxima and minima.9 The command below facilitates the identification of
the partitions that give good results. The solutions in six and 17 groups appear
to be good in the present case.

R> plot(wardRange, stat=c("ASWw", "HG", "PBC", "HC"), norm="zscore")
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The object returned by the as.clustrange function also contains a data.frame
called clustering containing all the partitions tested. One can thus use
as.clustrange directly rather than cutree. The solution in six groups can
be displayed in the following way:

R> seqdplot(mvadseq, group=wardRange$clustering$cluster6, border=NA)

9For a more robust standardization based on the median, norm="zscoremed" can be used.
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The as.clustrange function accepts several types of arguments, including the
set of clustering procedures available in the cluster library, even if the latter
do not accept weighting. However, it is not possible to use it directly with
non-hierarchical algorithms such as PAM. To do this, we use the wcKMedRange
function, which automatically computes the partitions for a series of values
of k (number of groups). The object returned is the same as that previously
presented for the hierarchical clustering procedures and the same presentations
can be used as previously. This function takes as a parameter a distance matrix,
kvals, a vector containing the number of groups of the different partitions to
be created, and a vector of weights. The supplementary arguments are passed
to wcKMedoids.

R> pamRange <- wcKMedRange(mvaddist, kvals=2:20, weights=mvad$weight)
R> summary(pamRange, max.rank=2)

1. N groups 1. stat 2. N groups 2. stat
PBC 4 0.565 5 0.5323
HG 20 0.910 19 0.8936
HGSD 20 0.908 19 0.8920
ASW 2 0.389 20 0.3716
ASWw 20 0.390 2 0.3900
CH 2 252.008 3 205.7979
R2 20 0.712 19 0.7024
CHsq 4 534.585 2 483.1366
R2sq 20 0.887 19 0.8808
HC 20 0.045 19 0.0528
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The presentation offered by the summary function is particularly useful for com-
paring the solutions of different clustering procedures. It can thus be noted that
the PAM results generally have a higher quality. Alongside the solution in two
groups, which may somewhat oversimplify, the solution in four groups seems
appropriate here. It should be pointed out, however, that these partitions could
still be statistical artefacts since the “ASW” is less than 0.5.
The various tools that we have presented have enabled us to construct a ty-
pology of sequences. To do so, we have tested various algorithms and numbers
of groups before opting for a partition in four groups created using the PAM
method. In a general way, we suggest that readers test a larger number of
algorithms than have been tested here. Lesnard (2006) suggests for example
using the “average” method or the “flexible” method (see Table 1). The tools
presented make it possible to make these comparisons.

6.4. Naming the clusters

Once the typology has been created, it is customary to name the types obtained
so as to make them easier to interpret. The factor function makes it possible to
create a categorial variable. To do so, one specifies the variable of the types (here
pamclust4$clustering), the values that this variable takes with the levels
argument (these values can be found in the previous graphics), and the labels
that one wants to assign to each of these types with the labels argument. The
labels must be specified in the same order as the levels argument so that first
item of levels (here 66) corresponds to the first item of labels (here “Training
– Employment”).

R> mvad$pam4 <- factor(pamclust4$clustering, levels=c(66, 467, 607, 641), labels=c("Train-Empl", "School-Empl", "High Ed", "Unempl"))

It is also possible to automatically label the clusters using the medoid sequence
of each cluster. The seqclustname function can be used for this purpose. One
needs to specify the sequence object (seqdata argument), the clustering (group
argument), the distance matrix (diss argument). If weighted=TRUE (default),
then the weights of the seqdata object are used to find the medoids. Finally,
on can set perc=TRUE to add the percentage of observation in each groups to
the labels.

R> mvad$pam4.auto <- seqclustname(mvadseq, pamclust4$clustering, mvaddist)
R> table( mvad$pam4.auto, mvad$pam4)

Train-Empl School-Empl High Ed Unempl
TR/22-EM/48 189 0 0 0
SC/10-FE/12-EM/48 0 307 0 0
SC/25-HE/45 0 0 160 0
TR/22-JL/48 0 0 0 56
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Once the clusters have been named, the typology is constructed. Before con-
cluding, we return in more detail to the question of the simplification induced
by cluster analysis and the bias this can introduce into the analysis. We illus-
trate this question by presenting the computation of the links between typology
and explanatory factors and showing how this can bias the results.

7. Linking trajectory types and explanatory factors
Many research questions in the social sciences connect trajectories (or sequences)
with explanatory factors. For example, one may want to know whether the
occupational trajectories of men differ significantly from those of women. Sim-
ilarly, Widmer et al. (2003) seek to bring to light the appearance of new tra-
jectories in the construction of family life. To do so, one generally correlates a
typology of family sequences with the cohort of individuals with the aid of a
chi-square test or logistic regression (Abbott and Tsay 2000). In this section,
we present this technique and also the dangers it implies for the analysis.
Suppose one seeks to measure the links between the variable test that we
have created for our purposes10 and our trajectories. This variable takes two
modalities, “test” and “non-test”, and groups the sequences in the following
way:

R> seqdplot(mvadseq, group=mvad$test, border=NA)
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The “non-test” individuals seem in particular to have a strong probability of
undergoing a period of unemployment. Is this difference significant? One can
run a chi-square test between the variable test and pam4 (which covers our
types) in the following way for weighted data. One starts by constructing a
crossed table with the xtabs function.11 This function takes as a parameter
a formula in which the left side of the equation refers to the weightings and
the right side lists the factors that form the crossed table. The data argument
specifies where variables that appear in the formula are to be found. One then
runs a chi-square test on this table.

10The detail of the creation of this variable is given in Annex D.
11For unweighted data, the table function can be used.
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R> tb <- xtabs(weight~test+pam4, data=mvad)
R> chisq.test(tb)

Pearson's Chi-squared test

data: tb
X-squared = 0.02, df = 3, p-value = 1

The result is non-significant, which means that according to this procedure
the trajectories do not differ in terms of the variable test. What is the prob-
lem? Is this really the case? No, the problem arises from the simplification
effected by cluster analysis. By using the typology in the chi-square test, one
implicitly makes the assumption that this typology is sufficient to describe the
complexity of the trajectories, which is not case here. In fact the test variable
explains the variation of the trajectories within the types. As an example, the
following graphic shows the differences in trajectories according to the test
variable for the individuals classified in the type “School-Employment”. The
“non-test” individuals thus seem to have a greater risk of undergoing a period
of “Unemployment”. Hence the variability within this type does not seem to be
negligible.

R> SchoolEmpl <- mvad$pam4=="School-Empl"
R> seqdplot(mvadseq[SchoolEmpl, ], group=mvad$test[SchoolEmpl], border=NA)
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Let us return to the underlying assumptions already mentioned and attempt to
explain it. In using the typology, one assigns its type to each sequence. One
thus ignores the gap between the trajectory really followed by an individual
and its type. One possible justification for this operation would be to say that
the types obtained correspond to the models that have actually generated the
trajectories. The gaps between the trajectories followed and these models (i.e.
the types) could thus be assimilated to a kind of random error term containing
no pertinent information. This therefore amounts to make the assumption
that the trajectories are generated by well established models that are clearly
distinct from one another. Moreover, we are implicitly making the assumption
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that we have actually succeeded in finding the true models with the aid of
cluster analysis.
In parallel, a second assumption is also being made, namely that the types
obtained are equally different from one another.12 But this is not the case.
The “Apprenticeship-Employment” and “School-Employment” types are closer,
because they have the same trajectory endpoint. By contrast, the “Higher
Education” and “unemployed” types are particularly distant from each other.
These two assumptions are strong ones. One postulates the existence of models
that have actually generated the trajectories, which is debatable from a socio-
logical standpoint. In accordance with the life course paradigm, one can thus
suppose that the individuals are subject to various influences and constraints
which, each in their own way, contribute to the construction of the trajectory
(or part of it). This is a long way from the search for clearly defined models of
trajectory.
Once again, these assumptions may prove pertinent if the groups obtained are
very homogeneous and very different from one another — a situation in which
the average silhouette should be relatively high (ASW > 0.7, for example). But
this is not the case here, since the average silhouette is less than 0.5.
The solution to this problem consists in using discrepancy analysis (Studer et al.
2011). This type of analysis makes it possible to measure the strength of the
link by providing a pseudo-R2, i.e. the share of the variation of the sequences
explained by a variable, and also the significance of the association. One is thus
freed from the assumption of trajectory models by directly computing the link,
without preliminary clustering. Studer et al. (2011) gives an introduction to its
implementation in R as well as a general presentation of the method. Only a
brief overview is therefore offered here to support the argument.
Briefly, a bivariate test of the association between the sequences and the variable
test can be computed with the dissassoc function available in the TraMineR
library. The results that interest us here can be read on the line Pseudo R2. It
can thus be observed that the test variable explains 3.6% of the variability of
the trajectories and the p-value is highly significant.

R> set.seed(1)
R> dsa <- dissassoc(mvaddist, mvad$test, weights=mvad$weight, weight.permutation="diss", R=5000)
R> print(dsa$stat)

t0 p.value
Pseudo F 25.8285 0.0002
Pseudo Fbf 25.9594 0.0002
Pseudo R2 0.0351 0.0002
Bartlett 2.4336 0.8050
Levene 20.0631 0.0006

12Kohonen maps make it possible to visualize these distances between types of trajectories
(Rousset and Giret 2007).
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We may include several covariates by building a sequence regression trees with
the seqtree and seqtreedisplay13 functions (Studer et al. 2011).14

R> tree <- seqtree(mvadseq~gcse5eq+Grammar+funemp, data=mvad, diss=mvaddist, weight.permutation="diss")
R> seqtreedisplay(tree, type="d", border=NA)

This analysis highlights the main effect as well as the interactions between co-
variates and the sequences. Here, the gcse5eq covariate (having good results at
the end of compulsory schooling) has the most important effect. For those with
good results, the most explanatory covariate is having been in a Grammar school.
On the contrary, for those with poor results, the most important covariate is
having an unemployed father.
Discrepancy analysis leads to a change of paradigm and frees us from the con-
cept of clearly defined models of trajectories. Rather than relying on the search
for models, we consider that the trajectories are set in a context which influ-
ences the construction of the trajectory in its own way. In other words, we
seek to understand to what extent interindividual variability is explained by a
context, while accounting for the diversity of the paths followed. From a con-
ceptual standpoint, the assumptions underlying discrepancy analysis are very
close to the principles put forward by the life course paradigm. Elder (1999)
thus stresses the need to analyse the life course in times and places (the context)
while preserving the interindividual variability and the agency of the actors.

13The free GraphViz software (Gansner and North 1999) must be installed and accessible
for the function to work properly. It can be downloaded from http://www.graphviz.org/.

14The ANOVA approach can also be extended to the multifactor case using the dissmfacw
function.

http://www.graphviz.org/
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In our view, building sequence typologies is a powerful method which has the
advantage offering a descriptive point of view on the sequences while reducing
the complexity of the analysis. However, its use in combination with inferential
methods should be conducted with caution, since it can lead to misleading
conclusions, as shown with the test variable.

8. Conclusion
This aim of this manual has been twofold: to present the WeightedCluster
library and offer a step-by-step guide to building typologies of sequences for
the social sciences. This library makes it possible, in particular, to represent
graphically the results of a hierarchical cluster analysis, to group identical se-
quences in order to analyse a larger number of sequences,15 to compute a set
of measures of the quality of a partition, and also an optimized version of the
PAM algorithm taking account of weightings. The library also offers proce-
dures for facilitating the choice of a particular clustering solution and defining
the number of groups.
In addition to the methods, we have also discussed the construction of sequence
typologies in the social sciences. We argue that these methods offer an impor-
tant descriptive viewpoint on sequences. Cluster analysis makes it possible
to bring out recurrent patterns and/or “ideal-typical sequences” (Abbott and
Hrycak 1990). The search for patterns is an important issue in several problem
areas of the social sciences (Abbott 1995). In particular it makes it possible to
bring to light the legal, economic or social constraints that frame the construc-
tion of individual courses. As Abbott and Hrycak (1990) note, while typical
sequences may result from constraints that are found recurrently, these typical
sequences can also act on reality by serving as models for the actors, who antic-
ipate their own future. These different possibilities of interpretation make the
creation of typologies a powerful tool.
All cluster analyses produce results, whatever their pertinence (Levine 2000).
It is therefore necessary to discuss their quality so as to specify the scope of
the results and not make unwarranted generalizations. In our view, this stage
is too often absent from cluster analyses. In our case, this quality was low, as
often happens in sequence analysis. With a higher quality (i.e. ASW > 0.7 for
example), one can be more affirmative, since the partition probably reflects a
strong structure identified in the data.
This is a powerful but also risky tool. In giving a unique name to each group,
one tends to remove from the analysis the diversity of the situations found
within each group. By way of an example, we noted that the length of the
periods of unemployment varies significantly within the group that we named
“Unemployed” and that this state is also found in other groups. This simplifica-
tion makes sense if the aim is to bring out the recurrent patterns for descriptive
purposes.
However, the typologies should not be used in an explanatory procedure. That

15The detail of this procedure is set out in Annex A.
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would amount to postulating the existence of clearly defined models that actu-
ally generated the trajectories and have been identified through cluster analysis.
Not only can this procedure result in misleading conclusions if these assump-
tions are not verified, but the assumptions are debatable from a sociological
viewpoint. In accordance with the life course paradigm, one can suppose that
the individuals are subject to various influences and constraints which, each in
their own way, contribute to the construction of the trajectory (or part of it).
We are thus a long way from the search for clearly defined trajectory models.
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A. Aggregating identical sequences
The algorithms that we have presented all take into account the weighting of
observations. This makes it possible to group identical observations by giv-
ing them a higher weighting. One can then perform cluster analysis on these
grouped data, which considerably reduces the computing time and the memory
used.16 The analysis is completed by “disaggregating” so as to reintegrate the
typology into the initial data.
These different operations are performed easily with the wcAggregateCases
function in the WeightedCluster library. This function identifies the identical
cases in order to group them. In a second stage, the object returned also makes
it possible to perform the reverse operation, i.e. to disaggregate the data.
Let us return to the example that we have used from the start of this manual.
The following code makes it possible to identify the identical sequences. The

16The quantity of memory required increases quadratically.
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wcAggregateCases function takes two parameters: a data.frame (or a matrix)
which contains the cases to be aggregated, and an optional vector of weights.

R> ac <- wcAggregateCases(mvad[, 17:86], weights=mvad$weight)
R> ac

Number of disaggregated cases: 712
Number of aggregated cases: 490
Average aggregated cases: 1.45
Average (weighted) aggregation: 1.45

The object returned by the wcAggregateCases function (here ac) gives some
basic information on the grouping. It can be seen that initial data set contains
712 observations, but only 490 different sequences. The object returned contains
three particularly interesting elements.

• aggIndex: index of unique objects.

• aggWeights: Number of times (weighted if necessary) that each unique
object of aggIndex appears in the data.

• disaggIndex: index of initial objects in the list of unique objects. This
information makes it possible to disaggregate the data. An example of its
use will be given later.

With this information, we can create an object uniqueSeq of the unique se-
quences weighted by the number of times they appear in the data. In the fol-
lowing code, ac$aggIndex makes it possible to select the unique sequences and
the vector ac$aggWeights contains the weighting of each of these sequences.

R> uniqueSeq <- seqdef(mvad[ac$aggIndex, 17:86], alphabet = mvad.alphabet,
states = mvad.scodes, labels = mvad.labels, weights=ac$aggWeights)

We can then compute different clustering solutions. Here, we compute the
distance matrix before using this information for the wcKMedoids function. As
before, we use here the vector ac$aggWeights to apply the weightings.

R> mvaddist2 <- seqdist(uniqueSeq, method="OM", indel=1.5, sm=subm.custom)
R> pamclust4ac <- wcKMedoids(mvaddist2, k=4, weights=ac$aggWeights)

Now that the clustering has been done, the information contained in ac$disaggIndex
makes it possible to move back. For example, the typology in the original (non-
aggregated) data.frame can be added with the aid of the following code. The
vector pamclust4ac$clustering contains the membership of each unique se-
quence in the clusters. Using the index ac$disaggIndex, we return to the
original data set, i.e. we obtain the membership of each (non-unique) sequence
in the clusters.
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R> mvad$acpam4 <- pamclust4ac$clustering[ac$disaggIndex]

The following table gives the distribution of the original cases between the
typology we obtained from the disaggregated cases (variable pam4) and the one
obtained from the aggregated data (variable acpam4). It can be seen that the
two solutions contain the same cases; only the labels differ.

R> table(mvad$pam4, mvad$acpam4)

28 87 414 444
Train-Empl 0 0 189 0
School-Empl 0 307 0 0
High Ed 160 0 0 0
Unempl 0 0 0 56

The aggregation of identical cases is a very useful functionality for large data
sets. It is often not possible to compute the set of distances because of insuf-
ficient memory. In such cases, the use of wcAggregateCases could solve the
problem.

B. Notes on performances
The algorithms for partitioning around medoids available in the WeightedClus-
ter library are highly optimized. Internally, the library offers several variants
of the PAM algorithm. The choice among these variants depends on the type
of the distance object passed to the function and on the method argument.
The diss argument may be a distance matrix or a dist object. In the first
case, each distance is registered twice, which can rapidly give rise to problems
of available memory, but the algorithm is generally faster (see the performance
comparisons below). If the argument is of the dist type, only the lower triangle
of the distance matrix is stored in memory, but this gain comes at the expense
of the speed of the algorithm.
In contrast to the PAM algorithm available in the cluster library, the distance
matrix is not copied internally, making it possible to perform a clustering of a
considerably larger number objects before reaching the memory limits of the
machine.
The method argument specifies the algorithm used. Two versions are available:
the original version of the PAM algorithm and “PAMonce”. The “PAMonce”
algorithm implements the optimizations proposed by Reynolds et al. (2006),
which consist in evaluating the cost of the suppression of a medoid only once
(rather than n times in the original version). We have also included in this
algorithm a second optimization which consists in not evaluating the gain from
replacing a medoid by a given object if the distance between them is zero.
This optimization is consistent with the mathematical definition of a measure
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of distance, whereby two objects are identical if, and only if, their distance is
zero. This optimization only makes sense insofar as the objects to be grouped
contain duplicates and in particular only so long as the measure of dissimilarity
used respects this condition. It should be noted that measures of dissimilarity
generally do respect it.
To measure the impact of these optimizations on performance, we ran several
simulations. They grouped in k ∈ (2, 8, 16, 24, 32, 48, 64, 96, 128) groups a set
of n ∈ (200, 500, 1000, 2000) observations whose x and y coordinates were ran-
domly generated with a uniform distribution. Figure 1 shows the changes in
computing time (on a logarithmic scale) according to the values of n and k.
Figure 2 shows the changes in total relative time, i.e. divided by the time taken
by the fastest algorithm for this solution, with the same parameters.

Figure 1: Changes in computing time according to n and k
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Figure 2: Changes in relative time according to n and k
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The solutions proposed by WeightedCluster are faster and the differences in-
crease as k and n increase. The use of a distance matrix rather than the dist
object makes it possible to reduce the computing time. The gain in memory is
thus indeed achieved at the expense of computing time. The same is true for
the optimizations of “PAMonce”, which brings a significant gain. Relative to
the cluster library, the gains are particularly great (around a factor of 15) when
n is greater than 1000 and k is large.
It should also be noted that if the data contain identical cases, the gains are po-
tentially still greater, since these cases can grouped by using wcAggregateCases.
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This operation considerably reduces the memory requirement and the comput-
ing time.

C. Details of quality measures

C.1. Average Silhouette Width (ASW)

Originally proposed by Kaufman and Rousseeuw (1990), this index is based on
a notion of coherence of the assignment of an observation to a given group,
which is measured by comparing the average weighted distance, labelled ai, of
an observation i with the other members of its group and the average weighted
distance from the closest group, labelled bi.
Let k be the group of observation i, Wk the sum of the weightings of the
observations belonging to group k, wi the weight of observation i and ℓ one of
the other groups; the silhouette of an observation is computed as follows:

ai = 1
Wk − 1

∑
j∈k

wjdij (1)

bi = min
ℓ

1
Wℓ

∑
j∈ℓ

wjdij (2)

si = bi − ai

max(ai, bi)
(3)

Equation 1 supposes that the weighting unit is equivalent to one observation,
because the weighted sum of distances is divided by Wk −1. This assumption is
not problematic when the weights are computed from an aggregation of identical
cases (see Annex A) or when the data are not weighted. However, when some of
the wi or some of the Wk are lower than one, the ai are undefined and the value
of the silhouette cannot be interpreted. Those situations are quite frequent,
when the weights aim at correcting the sample representativeness (as it was the
case in our example). To address this issue, we propose to use awi instead of
ai when computing the silhouette. This awi value is computed as follows.

awi = 1
Wk

∑
j∈k

wjdij (4)

There are two interpretations for the awi value. First, it is the distance between
the observation and its own group, when all the observations of the group are
used to define the group. In the original formulation, the observation is removed
from the group before computing the ai value. Second, the awi value can be
interpreted as the ai value when the weighting unit is as small as possible, i.e.
when it tends to zero.
For both variant, the index finally used corresponds to the weighted average of
the silhouettes si. This value is returned in the stats element. The weighted
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average of the silhouettes of each group is given in the ASW element and measures
separately the coherence of each group.

C.2. C index (HC)
Developed by Hubert and Levin (1976), this index compares the partition ob-
tained with the best partition that could be obtained with this number of groups
and this distance matrix. The index ranges between 0 and 1, with a small value
indicating a good partition of the data. More formally, it is defined as follows.
Let S be the sum of the within-group distances weighted by the product of
the weights of each observation, W the sum of the weights of the within-group
distances, Smin the weighted sum of the W smallest distances, and Smax the
weighted sum of the W greatest distances:

Cindex = S − Smin

Smax − Smin
(5)

C.3. “Hubert’s Gamma” (HG, HGSD) and “Point Biserial Cor-
relation” (PBC)
These indexes measure the capacity of a partition to reproduce the distance
matrix by computing the association between the original distance d and a
second matrix dbin taking the value 0 for observations classified in the same
partition and 1 otherwise. To use the weightings, we use W mat, the matrix of
the product of the weightings W mat

ij = wi · wj .
Hubert and Arabie (1985) suggest measuring this association by Goodman and
Kruskal’s Gamma (HG) or Somers’ D (HGSD) to take account of the ties in
the distance matrix. WeightedCluster uses the following formulae based on the
fact that dbin takes only two different values. Let T be the weighted cross table
between the values of d in rows (ℓ rows) and of dbin in two columns (0 or 1)
computed by using the weightings W mat; the number of concordant pairs C,
the number of discordant pairs D and the number of ties on d E are defined as
follows:

C =
ℓ∑

i=1

i−1∑
i′=1

Ti′0 D =
ℓ∑

i=1

i−1∑
i′=1

Ti′1 E =
ℓ∑

i=1
Ti0 + Ti1

HG = C − D

C + D
HGSD = C − D

C + D + E

Hennig and Liao (2010) suggest using Pearson’s correlation instead, a solution
also known as “Point Biserial Correlation” (PBC equation 6) (Milligan and
Cooper 1985). Let sd and sdbin be the standard deviation weighted by W mat

of d and dbin respectively, sd,dbin
the covariance weighted by W mat between d

and dbin; this correlation is computed as follows:

PBC = sd,dbin

sdbin
· sdbin

(6)
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C.4. CH index (CH, CHsq, R2, R2sq)

Calinski and Harabasz (1974) suggest using the statistic F of the analysis of
variance by computing it based on the squared Euclidean distances. On the
same bases, one can compute a pseudo R2, i.e. the share of variability explained
by a partition. Studer et al. (2011) suggest an extension of these measures to
the weighted data.

D. Construction of the test variable
The test variable is constructed to explain the variability within the clusters.
To do so, we use an MDS for weighted data (Oksanen et al. 2012).

R> library(vegan)
R> worsq <- wcmdscale(mvaddist, w=mvad$weight, k=2)

Cluster analysis mainly explains the differences on the first axis. So we create
the variable test according to the second axis. In order for the chi-square test to
be close to zero, the proportions of “test” and “non-test” must be equivalent in
each group. To satisfy these two constraints, we use the median of the second
axis of the MDS in each group as a separation point.

R> library(isotone)
R> mvad$test <- rep(-1, nrow(mvad))
R> for(clust in unique(pamclust4$clustering)){

cond <- pamclust4$clustering == clust
values <- worsq[cond, 2]
mvad$test[cond] <- values> weighted.median(values, w=mvad$weight[cond])

}
R> mvad$test <- factor(mvad$test, levels=0:1, labels=c("non-test", "test"))
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