blockmodeling-package: An R package for Generalized and classical blockmodeling of...

Description Author(s) References See Also Examples

Description

This package is primarily meant as an implementation of Generalized blockmodeling. In addition, functions for computation of (dis)similarities in terms of structural and regular equivalence, plotting and other "utility" functions are provided.

Author(s)

Aleš Žiberna

References

Doreian, P., Batagelj, V. & Ferligoj, A. (2005). Generalized blockmodeling, (Structural analysis in the social sciences, 25). Cambridge [etc.]: Cambridge University Press.

Žiberna, A. (2007). Generalized Blockmodeling of Valued Networks. Social Networks, 29(1), 105-126. doi: 10.1016/j.socnet.2006.04.002

Žiberna, A. (2008). Direct and indirect approaches to blockmodeling of valued networks in terms of regular equivalence. Journal of Mathematical Sociology, 32(1), 57-84. doi: 10.1080/00222500701790207

Žiberna, A. (2014). Blockmodeling of multilevel networks. Social Networks, 39(1), 46-61. doi: 10.1016/j.socnet.2014.04.002

White, D. R., & Reitz, K. P. (1983). Graph and semigroup homomorphisms on networks of relations. Social Networks, 5(2), 193-234.

White, D. R. (2005). REGGE. Retrieved from http://eclectic.ss.uci.edu/~drwhite/REGGE/

See Also

Packages: sna network

Functions inside this package: critFunC, optParC, optRandomParC, REGE, plot.mat

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
n <- 8 # If larger, the number of partitions increases dramatically,
# as does if we increase the number of clusters
net <- matrix(NA, ncol = n, nrow = n)
clu <- rep(1:2, times = c(3, 5))
tclu <- table(clu)
net[clu == 1, clu == 1] <- rnorm(n = tclu[1] * tclu[1], mean = 0, sd = 1)
net[clu == 1, clu == 2] <- rnorm(n = tclu[1] * tclu[2], mean = 4, sd = 1)
net[clu == 2, clu == 1] <- rnorm(n = tclu[2] * tclu[1], mean = 0, sd = 1)
net[clu == 2, clu == 2] <- rnorm(n = tclu[2] * tclu[2], mean = 0, sd = 1)

# We select a random partition  and then optimize  it
all.par <- nkpartitions(n = n, k = length(tclu))
# Forming the partitions
all.par <- lapply(apply(all.par, 1, list), function(x) x[[1]])

# Optimizing one partition
res <- optParC(M = net,
   clu = all.par[[sample(1:length(all.par), size = 1)]],
   approaches = "hom", homFun = "ss" , blocks = "com")
plot(res) # Hopefully we get the original partition

# Optimizing 10 random partitions with optRandomParC
res <- optRandomParC(M = net, k = 2, rep = 10, 
approaches = "hom", homFun = "ss", blocks = "com")
plot(res) # Hopefully we get the original partition

# Using indirect approach - structural equivalence
D <- sedist(M = net)
plot.mat(net, clu = cutree(hclust(d = D, method = "ward"), k = 2))

blockmodeling documentation built on Sept. 4, 2018, 3 a.m.