
bootfs - Bootstrapped feature selection

Christian Bender ∗

September 8, 2013

This document describes the package ’bootfs’ for robust feature selection
in classification problems from high-throughput data, such as genomic or
proteomic screening data. Several methods for classification are combined,
in order to derive a robust estimation of the importance of each feature used
for classification.

1 Using bootfs

This section contains the basic steps for analysis of high-throughput data,
consisting of a number of samples to classify (such as patients) and a number
of features, such as genes or proteins. Samples originate in two sample
groups, for instance healthy versus sick patients. The aim is to find the
most important features discriminating two or more classes within sample
populations.

The usage of the package is illustrated for three classification algorithms:
pamr (Prediction analysis for Microarrays, [7], implementation in pamr -R-
package), rf boruta (Random forests with the Boruta algorithm for feature
selection, [4], implementation in Boruta-R-package) and scad (Support Vec-
tor Machines with Smoothly Clipped Absolute Deviation feature selection,
[8], implementation in the penalizedSVM R-package [1]). Also available fea-
ture selection methods (through penalizedSVM package) are 1norm for L1-
penalisation (LASSO), scad+L2 for Elastic-SCAD and DrHSVM for Elastic
Net. Further, the original random forest implementation (randomForest-
R-package [6]) is available as method rf, as well as the gradient boosting
machine ([2, 3]) from package gbm as method gbm. The methods pamr, rf,
rf boruta and gbm also allow multi-class classification. First of all load the
package:

∗Translational Oncology (TRON) Mainz, Germany. eMail: christian.bender@tron-
mainz.de

1

> library(bootfs)

1.1 Simulating data

Data can be simulated using a built in function simDataSet. This samples
a data matrix with nsam samples and ngen genes, as well as a grouping
vector defining two sample groups.

> set.seed(1234)

> data <- simDataSet(nsam=30, ngen=100, sigma=1.5, plot=TRUE)

> logX <- data$logX

> groupings <- data$groupings

1.2 Assessing performance of the classifiers

The first step is to verify, if the feature selection algorithms perform suffi-
cienctly on the given data set. For this, a crossvalidation of different classi-
fication algorithms is run:

> ## run the crossvalidation

> ## note the number of repeats should be set to 10 or so,

> ## it is set to 2 here to have a low running time of this illustration

> ## create a parameter object used for the different methods

> # for crossvalidation

> paramsCV <- control_params(seed=123,

+ ncv=5, repeats=2, jitter=FALSE, ## general parameters

+ maxiter=100, maxevals=50, ## svm parameters

+ max_allowed_feat=500, n.threshold=50, ## pamr parameters

+ maxRuns=300, ## RF parameters

+ ntree = 1000, ## GBM parameters

+ shrinkage = 0.01, interaction.depth = 3,

+ bag.fraction = 0.75, train.fraction = 0.75,

+ n.minobsinnode = 3, n.cores = 1,

+ verbose = TRUE)

> ## run the crossvalidation

> ## takes a while

> methods <- c("pamr", "scad", "rf_boruta")

> retCV <- doCV(logX, groupings, fs.methods = methods, DIR = NULL, params=paramsCV)

The above command uses the classification methods PAMR, SCAD-SVM
and RF-Boruta and performs a 5-fold (ncv=5) crossvalidation on the train-
ing data, repeating the crossvalidation 2 times with different training/test

2

set assignments. Classification methods and k-fold for the CV can be eas-
ily exchanged by setting the appropriate parameters. The results of the
crossvalidation are summarised as ROC (Receiver operator characteristic)
curves together with the corresponding AUC (area under the curve), shown
in figures 1, 2 and 3.

grx

AUC: 0.993
False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 1: Receiver Operator Characteristic (ROC) curve for the PAM al-
gorithm cross-validation. Input data were the simulated data matrix and
grouping vectore for 30 samples and 100 features.

1.3 Do the feature selection and importance ranking

If the performance is of sufficient quality, as seen in the ROC curves gen-
erated during the cross-validation, the bootstrapping approach for deriving
the most important features for this classification task can be done. Again,
we select the three algorithms from above and perform bootstrapping on the
input data. For each bootstrapping data set the feature selections are done
using each algorithm.

> # for bootstrapping

> paramsBS <- control_params(seed=123,

+ jitter=FALSE, bstr=15, ## general parameters

+ maxiter=100, maxevals=50, bounds=NULL, ## svm parameters

+ max_allowed_feat=500, n.threshold=50, ## pamr parameters

+ maxRuns=300, ## RF parameters

3

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

mean AUC: 0.972

ROC curves averaged over all CV runs

Figure 2: Receiver Operator Characteristic (ROC) curve for the random
forest RF-Boruta algorithm cross-validation. Input data were the simulated
data matrix and grouping vectore for 30 samples and 100 features.

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

mean AUC: 0.861

ROC curves averaged over all CV runs

Figure 3: Receiver Operator Characteristic (ROC) curve for the SCAD-SVM
algorithm cross-validation. Input data were the simulated data matrix and
grouping vectore for 30 samples and 100 features.

4

+ ntree = 1000, ## GBM parameters

+ shrinkage = 0.01, interaction.depth = 3,

+ bag.fraction = 0.75, train.fraction = 0.75,

+ n.minobsinnode = 3, n.cores = 1,

+ verbose = TRUE, saveres=FALSE

+)

> ## run the bootstrapping

> ## takes a while

> methods <- c("pamr", "scad", "rf_boruta")

> retBS <- doBS(logX, groupings, fs.methods=methods, DIR="bs", params=paramsBS)

>

Here, 15 bootstrap sample sets are drawn (bstr=15) and feature Selection is
done for each sample set. The group proportions are kept constant during
the sample selection. Now, for each method, a separate importance graph
can be generated:

> ## show an importance ranking for a single

> ## classification method

> bsres <- makeIG(retBS[[1]], SUBDIR=NULL, prob=.999)

This might be useful to inspect the selected features for each method sepa-
rately. The parameter prob=.9 is used to define the cutoff value, how often
a feature at least must co-occur with another feature, in which case an edge
is drawn between them. However, the general ranking of the importance of
the features is done by generating the combined importance graph from all
selected methods:

> ## create the combined importance graph for all methods

> ## and export the adjacency matrix containing the

> ## numbers of occuerrences of the features, as well

> ## as the top hits.

> res <- resultBS(retBS, DIR=NULL, vlabel.cex = 3, filter = 5)

There are several arguments which customise the look of the importance
graph. In this call, the vlabel.cex argument defines the magnification factor
of the node labels (each node corresponds to one feature). The argument
filter can be used to specify, how often a feature must co-occur with another,
such that an edge is drawn between the two features. Figure 4 shows the
result of the above call.

The graph can be customised more flexibly using the importance igraph
function directly:

5

grx

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

g100

g16

g2

g3

g30

g31

g36

g50

g57g59

g60

g67

g68

g69

g72

g73

g74

g76

g77

g78

g79

g8

g80

g82

g83

g85

g86

g87 g88

g89

g91

g93

g94

g95

g96

g97

g98

g99

Figure 4: Importance graph generated by resultBS. Node width is propor-
tional to the absolute frequency of occurrence of a feature across all boot-
strap feature selections. Edge width is proportional to the frequency of
co-occurrence of the two adjacent nodes.

6

> ## plot the importance graph directly. Gives more

> ## flexibility to adjust the graph

>

> resx <- res[[1]]

> ig <- importance_igraph(resx$adj, main = "my test",

+ highlight = NULL, layout="layout.ellipsis",

+ pdf=NULL, pointsize=12, tk=FALSE,

+ node.color="grey", node.filter=NULL,

+ vlabel.cex=2, vlabel.cex.min=0.5, vlabel.cex.max=5,

+ max_node_cex=8,

+ edge.width=2, edge.filter=2, max_edge_cex=5, ewprop=3)

Figure 5 shows the importance graph generated with the above call. Ar-
guments vlabel.cex, vlabel.cex.min and vlabel.cex.max can be used to adjust
the overall, minimum and maximum expansion factor for the node labels.
max node cex controls the maximum expansion factor of the node size. The
size of the nodes is always proportional to the absolute occurrence of the
feature in the bstr bootstrapping sample sets. edge.width and max edge cex
are used for setting the edge width and expansion factor for the edges, re-
spectively, while ewprop is a proportionality factor controlling the decrease
of edge width with decreasing frequency. A higher value of ewprop means
a fast reduction of edge width and thus a less densly packed importance
graph plot. Also consider the help pages for the respective functions, to
learn about the remaining function arguments.

1.4 Doing multi-class classification

It is also possible to classify multiple classes at once. To illustrate this,
we show an analysis of Fisher’s Iris Data set. The goal is to discriminate
between three Iris species (Iris setosa, Iris virginica and Iris versicolor),
using four features Sepal length, Sepal width, Petal length and Petal width.
We load the Iris data set and prepare it for bootfs:

> ## do multiclass classification

> ## load the data

> data(iris)

> groupings <- list(Species=iris$Species)

> logX <- iris[,1:4]

> methods <- c("gbm","rf","pamr")

> paramsCV <- control_params(seed=123,

+ ncv=5, repeats=2, jitter=FALSE, ## general parameters

+ maxiter=100, maxevals=50, ## svm parameters

7

my test

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

g100

g16

g2

g3

g30

g31

g36

g50

g57g59
g60

g67
g68

g69

g72

g73

g74

g76

g77

g78

g79

g8

g80

g82

g83

g85
g86

g87 g88
g89

g91

g93

g94

g95

g96

g97

g98

g99

Figure 5: Importance graph generated by call to importance igraph directly.
Note how the edge widths are thicker but decreasing more rapidly as in figure
4, achieved by setting max edge cex and ewprop appropriately. Besides, the
node label sizes are adjusted using vlabel.cex.

8

+ max_allowed_feat=500, n.threshold=50, ## pamr parameters

+ maxRuns=300, ## RF parameters

+ ntree = 1000, ## GBM parameters

+ shrinkage = 0.01, interaction.depth = 3,

+ bag.fraction = 0.75, train.fraction = 0.75,

+ n.minobsinnode = 3, n.cores = 1,

+ verbose = TRUE)

Here we use the Gradient Boosting Machine, Breiman’s Random Forests
and PAMR. As usual we perform a crossvalidation of the selected methods,
to assess their individual performance:

> ## crossvalidation

> retCV <- doCV(logX, groupings, fs.methods = methods, DIR = NULL, params=paramsCV)

A summary of the CV results can be obtained using the resultsCV function:

> resultCV(retCV)

●
●

gbm rf pamr

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

3 − class classification
multinomial model

classes:
setosa
versicolor
virginica

median auc

Figure 6: Multiclass AUCs generated with the pROC package. Shown are
the distributions of AUCs over all cross-validation repeats and folds.

Note that ROC curve display is not possible for more than two classes. For
assessment of the performance we rely on the area under curve calculation
for multiclass problems [5], implemented in the pROC package. this gives
us the AUC for each CV fold and repeat.

Now, we can proceed to the bootstrapped feature selection:

9

> paramsBS <- control_params(seed=123,

+ jitter=FALSE, bstr=15, ## general parameters

+ maxiter=100, maxevals=50, bounds=NULL, ## svm parameters

+ max_allowed_feat=500, n.threshold=50, ## pamr parameters

+ maxRuns=300, ## RF parameters

+ ntree = 1000, ## GBM parameters

+ shrinkage = 0.01, interaction.depth = 3,

+ bag.fraction = 0.75, train.fraction = 0.75,

+ n.minobsinnode = 3, n.cores = 1,

+ verbose = TRUE, saveres=FALSE

+)

> ## bootstrapped feature selection

> retBS <- doBS(logX, groupings, fs.methods=methods, DIR=NULL, params=paramsBS)

The results are generated and the importance graph is plotted:

> ## make results from all methods used

> res <- resultBS(retBS, DIR=NULL, vlabel.cex = 3, filter = 1)

> ## plot the importance graph

> resx <- res[[1]]

> ig <- importance_igraph(resx$adj, main = "multiclass test, IRIS data",

+ highlight = NULL, layout="layout.ellipsis",

+ pdf=NULL, pointsize=12, tk=FALSE,

+ node.color="grey", node.filter=NULL,

+ vlabel.cex=1.2, vlabel.cex.min=0.5, vlabel.cex.max=4,

+ max_node_cex=8,

+ edge.width=1, edge.filter=1, max_edge_cex=2, ewprop=3)

10

multiclass test, IRIS data

●

●

●

●

Petal.Length

Petal.Width

Sepal.Length

Sepal.Width

Figure 7: Result of multiclass bootfs, done on the IRIS data set. All 4
features are left.

11

Session Information

The version number of R and packages loaded for generating the vignette
were:

� R version 3.0.1 (2013-05-16), x86_64-unknown-linux-gnu

� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C,
LC_TIME=en_US.UTF-8, LC_COLLATE=en_US.UTF-8,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=C, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

� Base packages: base, datasets, graphics, grDevices, methods, stats,
utils

� Other packages: BiocInstaller˜1.10.3

� Loaded via a namespace (and not attached): tools˜3.0.1

References

[1] Natalia Becker, Grischa Toedt, Peter Lichter, and Axel Benner. Elastic
scad as a novel penalization method for svm classification tasks in high-
dimensional data. BMC Bioinformatics, 12:138, 2011.

[2] Jerome˜H Friedman. Greedy function approximation: a gradient boost-
ing machine. Annals of Statistics, pages 1189–1232, 2001.

[3] Jerome˜H Friedman. Stochastic gradient boosting. Computational
Statistics & Data Analysis, 38(4):367–378, 2002.

[4] Miron˜B. Kursa and Witold˜R. Rudnicki. Feature selection with the
boruta package. Journal of Statistical Software, 36(11):1–13, 9 2010.

[5] Xavier Robin, Natacha Turck, Alexandre Hainard, Natalia Tiberti,
Frédérique Lisacek, Jean-Charles Sanchez, and Markus Müller. proc:
an open-source package for r and s+ to analyze and compare roc curves.
BMC bioinformatics, 12(1):77, 2011.

[6] Leo˜Breiman Statistics and Leo Breiman. Random forests. In Machine
Learning, pages 5–32, 2001.

[7] Robert Tibshirani, Trevor Hastie, Balasubramanian Narasimhan, and
Gilbert Chu. Diagnosis of multiple cancer types by shrunken centroids
of gene expression. Proc Natl Acad Sci U S A, 99(10):6567–6572, May
2002.

12

[8] Hao˜Helen Zhang, Jeongyoun Ahn, Xiaodong Lin, and Cheolwoo Park.
Gene selection using support vector machines with non-convex penalty.
Bioinformatics, 22(1):88–95, Jan 2006. SCAD paper.

13

