R/cGWAS.R

Defines functions cGWAS.emmax cGWAS

Documented in cGWAS cGWAS.emmax

#
# cGWAS.R
# Claas Heuer, June 2014
#
# Copyright (C)  2014 Claas Heuer
#
# This file is part of cgenpp.
#
# cgenpp is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# cgenpp is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# in file.path(R.home("share"), "licenses").  If not, see
# <http://www.gnu.org/licenses/>.
#

# cGWAS

cGWAS <- function(y,M,X=NULL,V=NULL,dom=FALSE, verbose=FALSE){

id = 1:length(y)
isy = id[!is.na(y)]
n = length(isy)
if(n<length(y)) { stop("NA's are not allowed")}
sparse=FALSE

if(missing(X)) { X<-array(1,dim=c(n,1))}
if(missing(V)) {
  V<-sparseMatrix(i=1:n,j=1:n,x=rep(1,n))
  sparse=TRUE 
  } else {
    if (class(V) == "dgCMatrix"){sparse=TRUE} else { 
      if (class(V) != "matrix") { stop("V must be either of type 'matrix' or 'dgCMatrix'") } 
    }
  }

## this is only for internal use, namely: cGWAS.emmax
second_transform=FALSE;
V2 = array(1,dim=c(1,1))  	 

#	 .Call( "cGWAS", y[isy], M[isy,], V[isy,isy], X[isy,], dom, sparse, threads, PACKAGE = "cgenpp" )
gwa <- .Call( "cGWAS", y, M, V, V2, X, dom, second_transform, sparse, verbose, options()$cgenpp.threads, PACKAGE = "cgenpp" )

if(dom) { 

  colnames(gwa$p_value) <- c("add","dom")
  colnames(gwa$beta) <- c("add","dom")
  colnames(gwa$se) <- c("add","dom") 

} else {

  gwa$p_value <- gwa$p_value[,1]
  gwa$beta <- gwa$beta[,1]
  gwa$se <- gwa$se[,1]

  }

return(gwa)

}



# cGWAS.emmax

cGWAS.emmax <- function(y,M,A=NULL,X=NULL,dom=FALSE,verbose=FALSE,scale_a = 0, df_a = -2, scale_e = 0, df_e = -2,niter=15000,burnin=7500,seed=NULL){

id = 1:length(y)
isy = id[!is.na(y)]
n = length(isy)
if(!is.vector(y) | !is.numeric(y)) stop("y must be a numeric vector")
if(n<length(y))   stop("NAs in y are not allowed")
if(any(is.na(M))) stop("NAs in M are not allowed")
if(missing(X)) X <- array(1,dim=c(n,1))

if(verbose) cat("\nComputing Eigen Decomposition and Estimating V\n")

lambda=0.01
if(missing(A)){
  UD <- eigen(cgrm(M,lambda=lambda)) 
} else {
    UD <- eigen(A)
  }

UX <- t(UD$vectors) %c% X
Uy <- (t(UD$vectors) %c% y)[,1]
D_sqrt <- sqrt(UD$values)
Z <- sparseMatrix(i=1:n,j=1:n,x=D_sqrt)

par_random <- list(list(scale=scale_a,df=df_a,sparse_or_dense="sparse",method="random"))
if(missing(seed)) { seed = as.integer((as.double(Sys.time())*1000+Sys.getpid()) %% 2^31) }

# set the number of threads to 1 for clmm
old_threads <- get_num_threads()
set_num_threads(1,silent=TRUE)

mod <- clmm(Uy,X=UX,random=list(Z),par_random ,scale_e=scale_e,df_e=df_e,niter=niter, burnin=burnin,seed=seed,verbose=FALSE)

# set number of threads to old value for GWAS
set_num_threads(old_threads,silent=TRUE)

s2a = mod[[4]]$posterior$variance_mean
s2e = mod$Residual_Variance$Posterior_Mean
if(verbose) cat(paste("\nVariance Components:\nMarker: ",round(s2a,digits=3),"\nResidual: ",round(s2e,digits=3),"\n",sep=""))

v = 1/sqrt(UD$values*s2a + s2e)
V = sparseMatrix(i=1:n,j=1:n,x=v)
sparse=TRUE
if(verbose) cat("\nRunning GWAS\n")
second_transform=TRUE

gwa<- .Call( "cGWAS", Uy, M, V, t(UD$vectors), UX, dom, second_transform, sparse,verbose, options()$cgenpp.threads, PACKAGE = "cgenpp" )

if(dom) { 

  colnames(gwa$p_value) <- c("add","dom")
  colnames(gwa$beta) <- c("add","dom")
  colnames(gwa$se) <- c("add","dom") 

} else {

  gwa$p_value <- gwa$p_value[,1]
  gwa$beta <- gwa$beta[,1]
  gwa$se <- gwa$se[,1]

  }

gwa$marker_variance = s2a
gwa$residual_variance = s2e

return(gwa)

}

Try the cgenpp package in your browser

Any scripts or data that you put into this service are public.

cgenpp documentation built on May 31, 2017, 4:22 a.m.