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The Cochran-Armitage linear trend test for proportions is often used for genotype-
based analysis of candidate gene association. Depending on the underlying genetic mode
of inheritance, the use of model-specific scores maximises the power. Commonly, the
underlying genetic model, i.e., additive, dominant or recessive mode of inheritance, is
a priori unknown. Association studies are commonly analysed using permutation tests,
where both inference and identification of the underlying mode of inheritance are im-
portant. Especially interesting are tests for case-control studies, defined by a maximum
over a series of standardised Cochran-Armitage tests, because such a procedure has power
under all three genetic models.

We reformulate the test problem and propose a conditional maximum test of scores-
specific linear-by-linear association tests (Agresti 2002). For maximum-type, sum and
quadratic test statistics the asymptotic expectation and covariance can be derived in a
closed form and the limiting distribution is known. Both the limiting distribution and ap-
proximations of the exact conditional distribution can easily be computed using standard
software packages. In addition to these technical advances, we extend the area of appli-
cation to stratified designs, studies involving more than two groups and the simultaneous
analysis of multiple loci by means of multiplicity-adjusted p-values for the underlying
multiple Cochran-Armitage trend tests. The new test is applied to reanalyse a study
investigating genetic components of different subtypes of psoriasis.

A new and flexible inference tool for association studies is available both theoretically
as well as practically since already available software packages can be easily used to
implement the suggested test procedures.

Keywords: genetic association, case-control study, robust trend test, maximum test, condi-
tional inference.

1. Objectives

In population-based case-control studies the association between a candidate allele and a dis-
ease can be evaluated by the Cochran-Armitage (CA) trend test (Armitage 1955), regardless
of whether or not Hardy-Weinberg equilibrium holds (Sasieni 1997). The CA test is based on a
set of scores assigned to the alleles. For genotypes aa, Aa, or AA, with A denoting a high risk
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Table 1: Genotype distributions for cases and controls.

Cases Controls Total
aa raa saa naa
aA raA saA naA
AA rAA sAA nAA
Total R S N

candidate allele and a any of the other alleles, three-dimensional score vectors optimising the
power of the CA test against dominant, additive, and recessive alternatives can be defined. If
the underlying mode of inheritance is known, the choice of an appropriate score vector for the
trend test is obvious. However, in situations where the underlying genetic model is unknown
choosing the wrong score vector leads to a substantial loss of power as shown by Freidlin,
Zheng, Li, and Gastwirth (2002). Therefore, inference procedures with good power under
all three genetic models are of special interest. An appealing approach is to construct a test
based on all three possible trend tests, for example utilising the maximum of the standardised
test statistics of the CA tests which are optimal under the dominant, additive, and recessive
model. An unconditional version of this test was proposed and investigated by Freidlin et al.
(2002). The distribution of this maximum test, called MAX test hereafter, under the null
hypothesis of equal genotype distribution in cases and controls is approximated by simulation
procedures by Freidlin et al. (2002) since the unconditional asymptotic distribution is hard
to derive.
In this paper, we show that the conditional MAX test is a simple special case of a general class
of linear statistics whose conditional distribution is easy to compute. Thus, without additional
theoretical effort, the MAX test enjoys all the nice properties of this class of conditional tests.
Therefore, we embed the MAX test as suggested by Freidlin et al. (2002) into the flexible
framework for conditional independence tests introduced by Strasser and Weber (1999). The
merits of doing so are i) the conditional reference distribution for the MAX test can be easily
approximated either by evaluating a three-dimensional normal distribution or by conditional
Monte Carlo experiments, ii) tests for stratified designs, designs with more than two groups
and two or more loci can be defined in a rather straightforward way, iii) the most likely
underlying mode of inheritance can be estimated by multiplicity-adjusted p-values for the
three CA statistics under consideration, iv) the simultaneous analysis of multiple loci, and
v) the analysis of genetic association studies using the MAX test and its newly introduced
extension can be performed by already available software implementations of the Strasser and
Weber (1999) framework.

2. Maximum Test
For case-control studies investigating the association between a binary phenotype and the
measured alleles of a candidate gene the data are typically presented as empirical genotype
distribution in each group. For a simple bi-allelic marker the data can be presented in a 3×2
contingency table, where A is the high risk candidate allele and a is any of the other alleles
(see Table 1).
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Table 2: Genotype distribution reformulated.

i Yi Xi wi h(Yi) gadd(Xi) gdom(Xi) grec(Xi)
1 Case aa raa 1 0 0 0
2 Case Aa raA 1 1 1 0
3 Case AA rAA 1 2 1 1
4 Control aa saa 0 0 0 0
5 Control Aa saA 0 1 1 0
6 Control AA sAA 0 2 1 1

We are interested in a comparison of the genotype distributions, i.e., the penetrances fj =
P (case|j) for j ∈ {aa, aA,AA}:

H0 : faa = faA = fAA vs. H1 : faa ≤ faA ≤ fAA

where at least one of the inequalities in the alternative is strict.
The CA test statistic with scores ξ = (ξaa, ξaA, ξAA) is essentially (modulo standardisation)

CA(ξ) =
∑

j∈{aa,aA,AA}
ξjrj . (1)

If the mode of inheritance is best described by the dominant model, the scores ξdom = (0, 1, 1)
(faa < faA = fAA) will lead to a trend test with maximal power. Under the recessive
model the score vector ξrec = (0, 0, 1) (faa = faA < fAA) is power optimal whereas a linear
trend represented by scores ξadd = (0, 1, 2) should be chosen when the mode if inheritance
is additive, i.e., faa < faA < fAA (Sasieni 1997; Slager and Schaid 2001). However, the
underlying genetic model is rarely known a priori. Motivated by the problem of choosing
the ‘right’ score vector, Freidlin et al. (2002) proposed the MAX unconditional test as the
maximum of three standardised CA tests with scores ξdom, ξadd, and ξrec as a global test for
association. A similar approach (Zheng, Freidlin, Li, and Gastwirth 2003; Zheng 2008) is to
introduce a parameter η for the score vector ξη = (0, η, 1) and to choose η in a data-driven
way. This procedure (based on a grid of η values) is a special case of the general framework
described in the following, see Appendix A for more details.
In the following, we reformulate the test problem and embed the MAX test into a general
framework for conditional inference procedures, derive its limiting distribution and propose
extensions to stratified designs, more than two groups and multiple loci.

2.1. Reformulation of the Problem

Let Yi denote the case and control status and Xi the genotype for all cells i = 1, . . . , n =
6. The weights wi represent the number of observations in each cell with total number of
observations N =

∑
iwi. The influence function h provides us with a zero-one dummy coding

of the groups (being one for cases and zero for controls). Moreover, three transformations
g of the genotype are under test: gdom assigns scores ξdom to genotypes (aa,Aa,AA), gadd
assigns scores ξadd and grec implements scores ξrec, cf. Table 2.
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2.2. Inference Problem and Linear Statistic
We are interested in testing the null hypothesis of independence of grouping Y and genotype
X, i.e., the equality of the distribution D(Y) to the conditional distribution D(Y|X) of Y
given X

H0 : D(Y|X) = D(Y)

against ordered alternatives. First, we define a three-dimensional statistic T, each dimension
being associated with one of the scores gadd, gdom, and grec. Each statistic is defined by the
sum of the scores multiplied by the weights associated with cases, i.e., is equivalent to the
Cochran-Armitage statistic (1):

T = (Tadd,Tdom,Trec) =
n∑
i=1

wig(Xi)h(Yi) ∈ R3 (2)

with g(Xi) = (gadd(Xi), gdom(Xi), grec(Xi)). Thus, the three-dimensional linear statistic T is
the vector of the unstandardised Cochran-Armitage statistics (CA(ξdom),CA(ξadd),CA(ξrec))
for the dominant, additive, and recessive model.

2.3. Conditional Expectation and Covariance
The distribution of T depends on the joint distribution of Y and X, which is unknown under
almost all practical circumstances. At least under the null hypothesis one can dispose of
this dependency by fixing the genotypes and conditioning on all possible permutations of the
groups. This principle leads to test procedures known as permutation tests. Strasser and
Weber (1999) derived closed-form expressions for the conditional expectation µ ∈ Rpq and
covariance Σ ∈ R3×3 of T under H0 given all permutations of the groupings.
The conditional expectation of the influence function h is

E(h) = N−1∑
i

wih(Yi) ∈ R

with corresponding variance

V(h) = N−1∑
i

wi (h(Yi)− E(h))2 .

The conditional expectation of the linear statistic T is

µ = E(T) = E(h)
n∑
i=1

wig(Xi),

Σ = V(T)

= N

N − 1V(h)×
(∑

i

wi
(
g(Xi)g(Xi)>

))
(3)

− 1
N − 1V(h)×

(∑
i

wig(Xi)
)(∑

i

wig(Xi)
)>

.

The three-dimensional expectation µ and the three diagonal elements of the covariance matrix
Σ contain the mean and the variances for the additive, dominant and recessive (unstandard-
ised) Cochran-Armitage statistics under H0, as given in (1) and (2), respectively.



Ludwig A. Hothorn, Torsten Hothorn 5

Note that the complete covariance structure, and thus the correlation between the elements
of the three-dimensional statistic T, is known and can be computed for the data at hand.
The corresponding correlation matrix coincides with the correlations obtained for the three
CA test statistics by Freidlin et al. (2002).

2.4. Test Statistics

Based on the three-dimensional statistic T and its expectation µ and covariance matrix Σ, we
can easily construct test statistics and derive their distribution under the conditions described
in the null hypothesis. As the number of observations N tends to infinity, Strasser and Weber
(1999) proved that the limiting distribution of the three-dimensional statistic T is a three-
dimensional normal distribution with expectation µ and covariance Σ. Thus, the asymptotic
distribution of a maximum-type statistic

cmax(T, µ,Σ) = max
∣∣∣∣ T− µ
diag(Σ)1/2

∣∣∣∣
can be evaluated by computing three-dimensional normal probabilities. Here, diag(Σ)1/2 are
the conditional standard deviations of the elements of T. Alternatively, either the sum (or
average) statistic

csum = 1>T− 1>µ
1>Σ1 , 1 = (1, 1, 1)>

or a quadratic form based on the Moore-Penrose inverse Σ+ of the conditional covariance
matrix Σ, i.e.,

cquad(T, µ,Σ) = (T− µ)>Σ+(T− µ)

can be used and follow a standard normal or a χ2 distribution with two degrees of freedom,
respectively. The sum and quadratic form statistics, which are competitors for the MAX test
statistic, reveal high power for an average alternative while the maximum-type form for a
particular genetic alternative. In addition, simple linear combinations of the standardised
optimum tests for each of the models have been proposed (Gastwirth 1985). Often the
most appropriate test is not the average of all these tests but a linear combination of a few
“extreme” members. Nonlinear MAX type tests have greater efficiency robustness properties
when the minimum correlation between the optimal tests for the models considered is less
than .70 (Freidlin, Podgor, and Gastwirth 1999), therefore, we focus on the MAX test. A
further advantage of maximum-type statistics is that information about the likely genetic
model underlying the data is available using multiplicity-adjusted p-values. Note that, under
any circumstances, the exact conditional distribution can be approximated by conditional
Monte Carlo methods, which is especially attractive for small sample sizes N when we can
not expect asymptotics to work well.

2.5. Illustration

In order to compare the conditional test and its implementation with the unconditional re-
sults reported by Freidlin et al. (2002), we reanalyse a study on the association between a
variant of the epidermal growth factor (EGF) gene and malignant melanoma according to
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Table 3: Melanoma data.

In situ Control Total
AA 6 32 38
AG 8 47 55
GG 10 20 30
Total 24 99 123

Table 4: MAX test for Melanoma data with linear statistic T, its conditional expectation
µ, standard deviation σ and corresponding standardised statistic along with multiplicity-
adjusted p-values.

T µ σ (T− µ)/σ pasympt pstep-down
dominant 18 16.5854 2.0391 0.6938 0.3907 0.3302
additive 28 22.4390 3.2687 1.7013 0.0868 0.0654
recessive 10 5.8537 1.8951 2.1879 0.0303 0.0359

Shahbazi, Pravica, Nasreen, Fakhoury, Fryer, Strange, Hutchinson, Osborne, Lear, Smith,
and Hutchinson (Table 3, 2002).
The linear statistic T, its conditional expectation µ, the standard deviations σ =

√
diag(Σ),

and the corresponding standardised CA statistics are given in Table 4. In addition, we
immediately are provided with the covariance matrix

Σ =

 4.1579 5.6255 1.4675
5.6255 10.6845 5.0590
1.4675 5.0590 3.5915


and corresponding correlation matrix

cor(Σ) =

 1.0000 0.8440 0.3798
0.8440 1.0000 0.8167
0.3798 0.8167 1.0000


These values are similar to the correlations between the three different CA test statistics as
reported by Freidlin et al. (2002).
The MAX test has a test statistic equal to 2.1879 and its asymptotic p-value is 0.0303 (the
minimum of pasympt in Table 4) which is roughly the same p-value as shown in Table 8 of
Freidlin et al. (2002). However, this global p-value does not give any information about the
underlying genetic model. Multiplicity-adjusted p-values (pasympt in Table 4) for each of the
dominant, additive, and recessive tests indicate which mode of inheritance describes the data
best (see Section 4 in addition): These results suggest that the cancer follows a recessive
model, although an additive or intermediate model cannot be ruled out based on these data.
We might want to check whether the asymptotic approximation work well enough in this situ-
ation. The exact conditional p-value is approximated by a conditional Monte Carlo procedure
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with 49999 random permutations of the data and the corresponding step-down multiplicity-
adjusted p-values (Westfall and Young 1993) are given as pstep-down in Table 4. The small
differences between the asymptotic and approximated p-values indicates that using the asymp-
totic distribution is adequate.

2.6. Generalisations
A straightforward generalisation is the consideration of 3 × k tables instead of 3 × 2 tables,
where sub-types of cases are compared with a control. For example, the genotype distribution
of the control can compare the genotype of cases with early and late onset of a certain disease.
A score can be attached to each group, for example 1 to the control group and −1/2 for both
the early and late onset cases leading to a linear-by-linear association test. Alternatively, a
trend in the onset of the disease can be described by scores 0, 1, 2 for the three groups.
In stratified designs, only permutations within each stratum, gender or family history, are
admissible; therefore, the expectation µ and covariance Σ has to be computed separately for
each stratum and is then aggregated over all possible strata. A special version of a stratified
design is the commonly used meta-analysis, including several independent studies as strata,
see e.g. Kavvoura and Ioannidis (2008). In the absence of a a priori assumption for a particular
mode of inheritance, recently Salanti and Higgins (2008) proposed a Bayesian approach.
In a recent meta-analysis of genome-wide association studies variants on chromosome 9p21.3
were identified affecting the coronary artery disease (Schunkert, Gotz, Braund, McGinnis,
Tregouet, Mangino, Linsel-Nitschke, Cambien, Hengstenberg, Stark, Blankenberg, Tiret,
Ducimetiere, Keniry, Ghori, Schreiber, El Mokhtari, Hall, Dixon, Goodall, Liptau, Pollard,
Schwarz, Hothorn, Wichmann, Konig, Fischer, Meisinger, Ouwehand, Deloukas, Thompson,
Erdmann, Ziegler, and Samani 2008) where all seven studies revealed the same additive mode
of inheritance using the here proposed approach.
Finally, it is interesting to consider multiple loci, i.e., multiple genotype distributions, si-
multaneously. For two loci, we can look at all six CA tests by defining a linear statistic T
containing the three CA tests for the first as well as the three CA tests for the second locus.
As a consequence, we can compute the complete covariance matrix and take the underlying
correlations between the two loci as well as between the three genetic models into account.

3. Illustration and Application
Reich, Mössner, König, Westphal, Ziegler, and Neumann (2002) investigate the associa-
tion between psoriasis and polymorphisms of genes encoding tumour necrosis Factor-α and
Interleukin-1β where for the IL1B_511 locus the related 3×2 table data are given in Table 5.
A control group and two groups of affected people with early and late onset of the disease
are under test. One is interested in detecting any deviation from independence of genotype
distribution for both loci and the three groups in either females and / or males. Attaching
scores 1,−1/2,−1/2 to the control, early and late onset group results in a linear statistic T
with six elements: three models for each of the two loci.
The multiplicity-adjusted p-values in Table 6 indicate that there is a strong deviation from
independence for the TNFA_238 locus. The recessive model has the largest p-value and thus
it is not likely that this model is true. The p-values for the dominant and the additive are
extremely small, so either of these models could have generated the data. We can simulta-
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Table 5: Psoriasis data

IL1B_511 locus

Male Control Early Onset Late Onset Total
CC 75 54 29 158
CT 93 44 13 150
TT 14 7 4 25
Total 182 105 46 333

Female Control Early Onset Late Onset Total
CC 76 26 17 119
CT 69 20 10 99
TT 18 5 2 25
Total 163 51 29 243

TNFA_238 locus

Male Control Early Onset Late Onset Total
GG 170 71 40 281
GA 12 33 6 51
AA 0 1 0 1
Total 182 105 46 333

Female Control Early Onset Late Onset Total
GG 146 43 24 213
GA 17 8 5 30
AA 0 0 0 0
Total 163 51 29 243

neously reject the null hypothesis of independence between the genotype distribution of the
IL1B_511 locus and the three groups. Here, the dominant model seems to explain the data
best.
Our analysis improves upon the original analysis of these data by Reich et al. (2002) with
respect to three points: All three groups and the stratification by gender are taken into
account and and the new test makes use of the correlation between the two loci instead of
applying a Bonferroni correction in order to maintain an overall significance level.
Recently, Bagos and Nikolopoulos (2007) proposed a penalty-free selection approach for the
underlying mode of inheritance based on the parameter estimates in a logistic regression
model. Here, we re-analyse their meta-analysis data on the association of KIR6.2 gene poly-
morphism with type II diabetes (Table 1 on page 3 in Bagos and Nikolopoulos 2007).

4. Simulation Experiments
It might be questioned if the minimal p-value can be observed for the correct mode of in-
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Table 6: MAX test for psoriasis data: Asymptotic multiplicity-adjusted p-values.

TNFA_238 IL1B_511
dominant < 0.0001 0.0407
additive < 0.0001 0.1051
recessive 0.7241 0.9819

Table 7: MAX test for Type II diabetes data with linear statistic T, its conditional expectation
µ, standard deviation σ and corresponding standardised statistic along with multiplicity-
adjusted p-values.

T µ σ (T− µ)/σ pasympt pstep-down
dominant 337 320.4287 7.0531 2.3495 0.0207 0.0112
additive 438 404.0265 10.1618 3.3433 0.0012 0.001
recessive 101 83.5979 5.2912 3.2889 0.0012 0.0013

heritance with high probability and thus how good the ‘estimator’ is under practical circum-
stances. The frequency of correct model identifications and the power of the MAX test is
investigated in some simple situations in the following.

Many different patterns of penetrances fj , j ∈ {aa, aA,AA}, disease prevalence p, sample
size of cases and controls R, S can be investigated in a simulation study. We will focus on
a high prevalent disease (i.e., p = 0.5), penetrances according to an additive, recessive and
dominant genetic model (as well as no association characterising the null hypothesis) for a
total sample size of N = 400 divided into the balanced R = S = 200 and several unbalanced
sampling schemes. Unbalanced data are of interest because real data examples exist with
seriously higher control sample size, see e.g. the data in Table 3, or with more cases, see e.g.
the IL13 polymorphism in atopic dermatitis Neuhäuser (2002), Table 4. For the proposed
MAX test both the global power πglobal(the decision rate in favour of any alternative) and
the correct model identification rates ψadd,ψrec,ψdom are compared with the power of the
individual genetic model tests πadd, πrec, πdom in Table 8.

Per definition all tests control the type I error rates. Clearly, the power is maximal for the
individual, unadjusted tests when the genetic model is known (bold marked). But the a
priori knowledge of the genetic model is commonly unrealistic. For balanced samples sizes
the power of the MAX test is independent of the underlying genetic model and marginal
smaller compared with the maximum power for the known model. Additionally to the global
decision that a significant association exists, the MAX test provide an adjusted p-value for
the most likely genetic model. In this case, the identification of the additive model is most
difficult because of the two equal competitors; whereas the identification of the dominant or
recessive model is easier because the additive model is the only competitor. For unbalanced
designs the power decreases although the total sample size remains constant.
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Table 8: Type I error rate and empirical power estimates (π) for prevalence p = 0.5 based on
10000 runs with sample sizes R (cases) and S (controls) along with correct model identification
rates ψ.

Model R S πglobal ψadd ψrec ψdom πadd πrec πdom
Null 200 200 0.048 0.012 0.017 0.019 0.051 0.047 0.049
dominant 200 200 0.85 0.13 0.01 0.71 0.75 0.23 0.91
additive 200 200 0.84 0.53 0.10 0.21 0.88 0.71 0.78
recessive 200 200 0.86 0.16 0.69 0.01 0.80 0.91 0.28
dominant 100 300 0.72 0.16 0.01 0.55 0.63 0.21 0.80
additive 100 300 0.73 0.43 0.14 0.16 0.78 0.60 0.65
recessive 100 300 0.77 0.16 0.60 0.01 0.67 0.82 0.22
dominant 300 100 0.76 0.11 0.01 0.64 0.66 0.19 0.82
additive 300 100 0.75 0.42 0.09 0.24 0.79 0.59 0.69
recessive 300 100 0.75 0.17 0.55 0.01 0.69 0.82 0.24

5. Computational Details
The coin add-on package (Hothorn, Hornik, van de Wiel, and Zeileis 2006, 2008, 2009) to
the R system for statistical computing (R Development Core Team 2009) provides an im-
plementation of the conditional inference framework sketched in this section. The analysis
of an association study by the MAX test only requires the user to set-up the score function
g. Then, the function independence_test can be used to perform the MAX test and to
compute multiplicity-adjusted p-values.

6. Conclusions
We propose a flexible approach to permutation tests for association of a bi-allelic marker
with a disease in population-based case-control studies. The joint conditional asymptotic
distribution of the three underlying linear association tests, i.e., Cochran-Armitage tests with
optimal scores for additive, dominant, and recessive modes of inheritance, is known and can
be used to approximate the distribution of the corresponding maximum statistic. Not only a
global p-value can be derived this way but also multiplicity-adjusted p-values for each of the
individual models. When the mode of inheritance is unknown, remarkably high correct model
selection rates can be achieved. Based on a general framework for conditional inference we
extend the MAX test to stratified designs, 3× k tables as well as multiple loci. Correlations
between loci and corresponding association tests are taken into account leading to more
powerful multiple test procedure. Further modifications and extensions and specific choices
of g and h are described by Hothorn et al. (2006) and Hothorn et al. (2008). For small sample
sizes, a better approximation of the p-values can be obtained from Monte Carlo resampling
techniques. For genome-wide association studies, computing time is a limiting factor; a further
advantage for the above approach (Ziegler, Koenig, and Thompson 2008).
The proposed procedures are easily applicable using the computational tools provided by the
R add-on package coin as illustrated in Appendix A. A future modification will be the use of



Ludwig A. Hothorn, Torsten Hothorn 11

model-specific genomic-control corrected tests analogously to Zang, Zhang, Yang, and Zheng
(2007) in the possible case of population stratification.
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A. Example Analyses
The Melanoma data are represented by a table object in R as follows:

R> me <- as.table(matrix(c( 6, 8, 10,
32, 47, 20), byrow = TRUE, nrow = 2,

dimnames = list(Group = c("In situ", "Control"),
Genotype = c("AA", "AG", "GG"))))

R> me <- t(me)
R> me

Group
Genotype In situ Control

AA 6 32
AG 8 47
GG 10 20

The function g is implemented by the following function:

R> add <- c(0, 1, 2)
R> dom <- c(0, 1, 1)
R> rec <- c(0, 0, 1)
R> g <- function(x) {

x <- unlist(x)
cbind(dominant = dom[x], additive = add[x], recessive = rec[x])

}

which then sets up the MAX test for the Melanoma data:

R> library("coin")
R> it <- independence_test(me, xtrafo = g, alternative = "greater")
R> it

Asymptotic General Independence Test

data: Group by Genotype (AA, AG, GG)
maxT = 2.1879, p-value = 0.03042
alternative hypothesis: greater

The multiplicity-adjusted p-values for both inference and estimating the underlying mode of
inheritance are computed via:

R> pvalue(it, method = "single-step")

dominant additive recessive
0.39063737 0.08676118 0.03040045



14 Order-restricted Scores Test

The score independent approach by Zheng (2008) maximises the Cochran-Armitage statistic
over potential score vectors ξη = (0, η, 1), i.e., one is interested in the test statistic cmax where
the maximium is taken over a grid of η values. This procedure can be performed by choosing
appropriate transformation g, i.e., a grid of η values in [0, 1]

R> gZheng <- function(x) {
x <- unlist(x)
eta <- seq(from = 0, to = 1, by = 0.01)
tr <- sapply(eta, function(n) c(0, n, 1)[x])
colnames(tr) <- paste("eta", eta, sep = "_")
tr

}
R> itZ <- independence_test(me, xtrafo = gZheng, alternative = "greater")
R> itZ

Asymptotic General Independence Test

data: Group by Genotype (AA, AG, GG)
maxT = 2.1879, p-value = 0.03151
alternative hypothesis: greater

R> pvalue(itZ, method = "single-step")

eta_0 eta_0.01 eta_0.02 eta_0.03 eta_0.04
0.03151304 0.03162379 0.03176212 0.03191972 0.03209197

eta_0.05 eta_0.06 eta_0.07 eta_0.08 eta_0.09
0.03228663 0.03250561 0.03274823 0.03301281 0.03330016

eta_0.1 eta_0.11 eta_0.12 eta_0.13 eta_0.14
0.03361386 0.03395610 0.03432383 0.03472546 0.03515723

eta_0.15 eta_0.16 eta_0.17 eta_0.18 eta_0.19
0.03561464 0.03610973 0.03663956 0.03720648 0.03781138

eta_0.2 eta_0.21 eta_0.22 eta_0.23 eta_0.24
0.03845817 0.03914792 0.03987640 0.04065208 0.04147678

eta_0.25 eta_0.26 eta_0.27 eta_0.28 eta_0.29
0.04235435 0.04328269 0.04426266 0.04530451 0.04640300

eta_0.3 eta_0.31 eta_0.32 eta_0.33 eta_0.34
0.04756671 0.04879473 0.05009090 0.05145841 0.05289975

eta_0.35 eta_0.36 eta_0.37 eta_0.38 eta_0.39
0.05441897 0.05601775 0.05770110 0.05946786 0.06132908

eta_0.4 eta_0.41 eta_0.42 eta_0.43 eta_0.44
0.06327947 0.06533041 0.06747833 0.06973053 0.07209088

eta_0.45 eta_0.46 eta_0.47 eta_0.48 eta_0.49
0.07456038 0.07714360 0.07984304 0.08266065 0.08560310

eta_0.5 eta_0.51 eta_0.52 eta_0.53 eta_0.54
0.08867050 0.09186639 0.09519253 0.09865287 0.10224856

eta_0.55 eta_0.56 eta_0.57 eta_0.58 eta_0.59
0.10598309 0.10985423 0.11386954 0.11802337 0.12232122
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eta_0.6 eta_0.61 eta_0.62 eta_0.63 eta_0.64
0.12676362 0.13134787 0.13608048 0.14095192 0.14596886

eta_0.65 eta_0.66 eta_0.67 eta_0.68 eta_0.69
0.15112707 0.15642563 0.16186213 0.16743632 0.17314356

eta_0.7 eta_0.71 eta_0.72 eta_0.73 eta_0.74
0.17898205 0.18494849 0.19104191 0.19725298 0.20358348

eta_0.75 eta_0.76 eta_0.77 eta_0.78 eta_0.79
0.21002529 0.21657605 0.22322887 0.22998050 0.23682421

eta_0.8 eta_0.81 eta_0.82 eta_0.83 eta_0.84
0.24375584 0.25076897 0.25785709 0.26501653 0.27223996

eta_0.85 eta_0.86 eta_0.87 eta_0.88 eta_0.89
0.27952144 0.28685492 0.29423443 0.30165464 0.30910862

eta_0.9 eta_0.91 eta_0.92 eta_0.93 eta_0.94
0.31659023 0.32409437 0.33161541 0.33914685 0.34668311

eta_0.95 eta_0.96 eta_0.97 eta_0.98 eta_0.99
0.35421895 0.36174935 0.36926863 0.37677208 0.38425498

eta_1
0.39171216

The test statistic takes its maximum for the score (0, 0, 1) (as above), its corresponding
adjusted p-value is only marginally larger compared to the MAX test based on three score
vectors (0.03151 vs. 0.03042).
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