
Diving Behaviour Analysis in R∗

An Introduction to the diveMove Package

Sebastián P. Luque†

Contents

1 Introduction 1

2 Features 1

3 Preliminary Procedures 2

4 How to Represent TDR Data? 3

5 Identification of Activities at Various
Scales 4

6 How to Represent Calibrated TDR Data? 5

7 Dive Summaries 8

8 Calibrating Speed Sensor Readings 8

9 Bout Detection 11

10 Summary 11

1 Introduction

Remarkable developments in technology for elec-
tronic data collection and archival have increased
researchers’ ability to study the behaviour of aquatic
animals while reducing the effort involved and im-
pact on study animals. For example, interest in
the study of diving behaviour led to the develop-
ment of minute time-depth recorders (TDRs) that
can collect more than 15 MB of data on depth, ve-
locity, light levels, and other parameters as animals

∗An earlier version of this introduction to diveMove has been
published in R News (Luque 2007)

†Contact: spluque@gmail.com. Comments for improvement
are very welcome!

move through their habitat. Consequently, extract-
ing useful information from TDRs has become a time-
consuming and tedious task. Therefore, there is an
increasing need for efficient software to automate
these tasks, without compromising the freedom to
control critical aspects of the procedure.

There are currently several programs available for
analyzing TDR data to study diving behaviour. The
large volume of peer-reviewed literature based on
results from these programs attests to their useful-
ness. However, none of them are in the free software
domain, to the best of my knowledge, with all the
disadvantages it entails. Therefore, the main mo-
tivation for writing diveMove was to provide an R
package for diving behaviour analysis allowing for
more flexibility and access to intermediate calcula-
tions. The advantage of this approach is that re-
searchers have all the elements they need at their
disposal to take the analyses beyond the standard
information returned by the program.

The purpose of this article is to outline the func-
tionality of diveMove, demonstrating its most useful
features through an example of a typical diving be-
haviour analysis session. Further information can be
obtained by reading the vignette that is included in
the package (vignette("diveMove")) which is cur-
rently under development, but already shows basic
usage of its main functions. diveMove is available
from CRAN, so it can easily be installed using in-

stall.packages().

2 Features

diveMove offers functions to perform the following
tasks:

1

• Identification of wet vs. dry periods, defined
by consecutive readings with or without depth
measurements, respectively, lasting more than
a user-defined threshold. Depending on the
sampling protocol programmed in the instru-
ment, these correspond to wet vs. dry periods,
respectively. Each period is individually iden-
tified for later retrieval.

• Calibration of depth readings, which is needed
to correct for shifts in the pressure transducer.
This can be done using a tcltk graphical
user interface (GUI) for chosen periods in the
record, or by providing a value determined a
priori for shifting all depth readings.

• Identification of individual dives, with their dif-
ferent phases (descent, bottom, and ascent),
using various criteria provided by the user.
Again, each individual dive and dive phase is
uniquely identified for future retrieval.

• Calibration of speed readings using the method
described by Blackwell et al. (1999), providing a
unique calibration for each animal and deploy-
ment. Arguments are provided to control the
calibration based on given criteria. Diagnostic
plots can be produced to assess the quality of
the calibration.

• Summary of time budgets for wet vs. dry peri-
ods.

• Dive statistics for each dive, including maxi-
mum depth, dive duration, bottom time, post-
dive duration, and summaries for each dive
phases, among other standard dive statistics.

• tcltk plots to conveniently visualize the entire
dive record, allowing for zooming and panning
across the record. Methods are provided to in-
clude the information obtained in the points
above, allowing the user to quickly identify
what part of the record is being displayed (pe-
riod, dive, dive phase).

Additional features are included to aid in analysis
of movement and location data, which are often col-
lected concurrently with TDR data. They include
calculation of distance and speed between successive
locations, and filtering of erroneous locations using
various methods. However, diveMove is primarily a
diving behaviour analysis package, and other pack-
ages are available which provide more extensive an-

imal movement analysis features (e.g. trip).

The tasks described above are possible thanks to the
implementation of three formal S4 classes to repre-
sent TDR data. Classes TDR and TDRspeed are
used to represent data from TDRs with and with-
out speed sensor readings, respectively. The latter
class inherits from the former, and other concurrent
data can be included with either of these objects. A
third formal class (TDRcalibrate) is used to repre-
sent data obtained during the various intermediate
steps described above. This structure greatly fa-
cilitates the retrieval of useful information during
analyses.

3 Preliminary Procedures

As with other packages in R, to use the package we
load it with the funtion library:

> library(diveMove)

This makes the objects in the package available in
the current R session. A short overview of the most
important functions can be seen by running the ex-
amples in the package’s help page:

> example(diveMove)

Data Preparation

TDR data are essentially a time-series of depth read-
ings, possibly with other concurrent parameters,
typically taken regularly at a user-defined inter-
val. Depending on the instrument and manufac-
turer, however, the files obtained may contain vari-
ous errors, such as repeated lines, missing sampling
intervals, and invalid data. These errors are better
dealt with using tools other than R, such as awk and
its variants, because such stream editors use much
less memory than R for this type of problems, es-
pecially with the typically large files obtained from
TDRs. Therefore, diveMove currently makes no at-
tempt to fix these errors. Validity checks for the
TDR classes, however, do test for time series being
in increasing order.

Most TDR manufacturers provide tools for download-
ing the data from their TDRs, but often in a propri-
etary format. Fortunately, some of these manufac-
turers also offer software to convert the files from
their proprietary format into a portable format,

2

such as comma-separated-values (csv). At least one
of these formats can easily be understood by R, us-
ing standard functions, such as read.table() or
read.csv(). diveMove provides constructors for its
two main formal classes to read data from files in one
of these formats, or from simple data frames.

4 How to Represent TDR Data?

TDR is the simplest class of objects used to repre-
sent TDR data in diveMove. This class, and its TDR-
speed subclass, stores information on the source file
for the data, the sampling interval, the time and
depth readings, and an optional data frame contain-
ing additional parameters measured concurrently.
The only difference between TDR and TDRspeed
objects is that the latter ensures the presence of a
speed vector in the data frame with concurrent mea-
surements. These classes have the following slots:

file: character,

dtime: numeric,

time: POSIXct,

depth: numeric,

concurrentData: data.frame

Once the TDR data files are free of errors and in a
portable format, they can be read into a data frame,
using e.g.:

> fp <- file.path("data", "dives.csv")

> sfp <- system.file(fp, package="diveMove")

> srcfn <- basename(sfp)

> tdrXcsv <- read.csv(sfp, sep=";")

and then put into one of the TDR classes using the
function createTDR(). Note, however, that this ap-
proach requires knowledge of the sampling interval
and making sure that the data for each slot are valid:

> ddtt.str <- paste(tdrXcsv$date, tdrXcsv$time)

> ddtt <- strptime(ddtt.str,

+ format="%d/%m/%Y %H:%M:%S")

> time.posixct <- as.POSIXct(ddtt, tz="GMT")

> tdrX <- createTDR(time=time.posixct,

+ depth=tdrXcsv$depth,

+ concurrentData=tdrXcsv[, -c(1:3)],

+ dtime=5, file=srcfn)

> ## Or a TDRspeed object, since we know we have

> ## speed measurements:

> tdrX <- createTDR(time=time.posixct,

+ depth=tdrXcsv$depth,

Figure 1. The plotTDR() method for TDR objects pro-
duces an interactive plot of the data, allowing
for zooming and panning.

+ concurrentData=tdrXcsv[, -c(1:3)],

+ dtime=5, file=srcfn,

+ speed=TRUE)

If the files are in *.csv format, these steps can be
automated using the readTDR() function to create
an object of one of the formal classes representing
TDR data (TDRspeed in this case), and immediately
begin using the methods provided:

> fp <- file.path("data", "dives.csv")

> sfp <- system.file(fp, package="diveMove")

> tdrX <- readTDR(sfp, speed=TRUE, sep=";",

+ na.strings="", as.is=TRUE)

> plotTDR(tdrX)

Several arguments for readTDR() allow mapping of
data from the source file to the different slots in
diveMove’s classes, the time format in the input and
the time zone attribute to use for the time readings.

Various methods are available for displaying TDR
objects, including show(), which provides an in-
formative summary of the data in the object, ex-
tractors and replacement methods for all the slots.

3

There is a plotTDR() method (Figure 1) for both
TDR and TDRspeed objects. The interact argu-
ment allows for suppression of the tcltk inter-
face. Information on these methods is available from
methods?TDR.

TDR objects can easily be coerced to data frame
(as.data.frame() method), without losing infor-
mation from any of the slots. TDR objects can addi-
tionally be coerced to TDRspeed , whenever it makes
sense to do so, using an as.TDRspeed() method.

5 Identification of Activities at
Various Scales

One of the first steps of dive analysis is to identify
dry and wet periods in the record. This is done with
function calibrateDepth(). Wet periods are those
with depth readings, dry periods are those without
them. However, records may have aberrant missing
depth that should not define dry periods, as they
are usually of very short duration1. Likewise, there
may be periods of wet activity that are too short to
be compared with other wet periods, and need to be
excluded from further analyses. These aspects can
be controlled by setting the arguments dry.thr and
wet.thr to appropriate values.

The next step involves correcting depth for shifts
in the pressure transducer, so that surface readings
correspond to zero. Such shifts are usually constant
for an entire deployment period, but there are cases
where the shifts vary within a particular deploy-
ment, so shifts remain difficult to detect and dives
are often missed. Therefore, a visual examination of
the data is often the only way to detect the location
and magnitude of the shifts. Visual adjustment for
shifts in depth readings is tedious, but has many ad-
vantages which may save time during later stages of
analysis. These advantages include increased under-
standing of the data, and early detection of obvious
problems in the records, such as instrument mal-
function during certain intervals, which should be
excluded from analysis.

Function calibrateDepth() takes a TDR object to
perform three basic tasks: 1. identify wet and dry
periods, 2. zero-offset correct (ZOC) the data, and

1They may result from animals resting at the surface of the
water long enough to dry the sensors.

3. identify all dives in the record and their phases.
ZOC can be done using one of three methods: “vi-
sual”, “offset”, and “filter”. The first one (“visual”) is
the default method, which let’s the user perform the
correction interactively, using the tcltk package:

> dcalib <- calibrateDepth(tdrX)

This command brings up a plot with tcltk con-
trols allowing to zoom in and out, as well as pan
across the data, and adjust the depth scale. Thus,
an appropriate time window with a unique surface
depth value can be displayed. This allows the user
to select a depth scale that is small enough to re-
solve the surface value using the mouse. Clicking
on the ZOC button waits for two clicks: i) the co-
ordinates of the first click define the starting time
for the window to be ZOC’ed, and the depth corre-
sponding to the surface, ii) the second click defines
the end time for the window (i.e. only the x co-
ordinate has any meaning). This procedure can be
repeated as many times as needed. If there is any
overlap between time windows, then the last one
prevails. However, if the offset is known a priori,
method “offset” lets the user specify this value as
the argument offset to calibrateDepth(). For ex-
ample, preliminary inspection of object tdrX would
have revealed a 3 m offset, and we could have simply
called (without plotting):

> dcalib <- calibrateDepth(tdrX,

+ zoc.method="offset",

+ offset=3)

A third method (“filter”) implements a smooth-
ing/filtering mechanism where running quantiles
can be applied to depth measurements sequentially,
using .depth.filter. It relies on the caTools

package. This method is still under development,
but reasonable results can already be achieved by
applying two filters, the first one using a running
median with a narrow window to denoise the time
series, followed by a running low quantile using a
wide time window. The integer vector given as argu-
ment k specifies the width of the moving window(s),
where ki is the width for the ith filter in units of
the sampling interval of the TDR object. Similarly,
the integer vector given as argument probs speci-
fies the quantile for each filter, where probsi is the
quantile for the ith filter. Smoothing/filtering can
be performed within specified minimum and maxi-

4

mum depth bounds using argument depth.bounds2,
in cases where surface durations are relatively brief
separated by long periods of deep diving. These
cases usually require large windows, and using depth
bounds helps to stabilize the surface signal. Further
details on this method are provided by Luque and
Fried (2011).

> dcalib <- calibrateDepth(tdrX,

+ zoc.method="filter",

+ k=c(3, 5760),

+ probs=c(0.5, 0.02),

+ na.rm=TRUE)

Once the whole record has been zero-offset cor-
rected, remaining depths below zero, are set to zero,
as these are assumed to indicate values at the sur-
face.

Finally, calibrateDepth() identifies all dives in
the record, according to a minimum depth criterion
given as its dive.thr argument. The value for this
criterion is typically determined by the resolution of
the instrument and the level of noise close to the sur-
face. Thus, dives are defined as departures from the
surface to maximal depths below dive.thr and the
subsequent return to the surface. Each dive may
subsequently be referred to by an integer number
indicating its position in the time series.

Dive phases are also identified at this last stage, and
is done using a smoothing spline model of the dive
and its first derivative. Detection of dive phases
is controlled by four arguments: a critical quan-
tile for rates of vertical descent (descent.crit.q), a
critical quantile for rates of ascent (ascent.crit.q),
a smoothing parameter (smooth.par), and a factor
(knot.factor) that multiplies the duration of the dive
to obtain the number of knots at which to evaluate
the derivative of the smoothing spline. The first
two arguments are used to define the rate of de-
scent below which the descent phase is deemed to
have ended, and the rate of ascent above which the
ascent phase is deemed to have started, respectively.
The rates are obtained by evaluating the derivative
of the smoothing at a number of knots placed reg-
ularly throughout the dive. Descent is deemed to
have ended at the first minimum derivative, and the
nearest input time observation is considered to indi-
cate the end of descent. The sign of the comparisons
is reversed for detecting the ascent.

2Defaults to the depth range

A more refined call to calibrateDepth() for object
tdrX may be:

> dcalib <- calibrateDepth(tdrX, dive.thr=3,

+ zoc.method="offset",

+ offset=3, descent.crit.q=0.01,

+ ascent.crit.q=0,

+ knot.factor=20)

The result (value) of this function is an object of
class TDRcalibrate, where all the information ob-
tained during the tasks described above are stored.

6 How to Represent Calibrated TDR

Data?

Objects of class TDRcalibrate contain the follow-
ing slots, which store information during the major
procedures performed by calibrateDepth():

call: TDR. The call used to generate the object.

tdr: TDR. The object which was calibrated.

gross.activity: list . This list contains four com-
ponents with details on wet/dry activities de-
tected, such as start and end times, durations,
and identifiers and labels for each activity pe-
riod. Five activity categories are used for la-
belling each reading, indicating dry (L), wet
(W), underwater (U), diving (D), and brief wet
(Z) periods. However, underwater and diving
periods are collapsed into wet activity at this
stage (see below).

dive.activity: data.frame. This data frame contains
three components with details on the diving ac-
tivities detected, such as numeric vectors iden-
tifiying to which dive and post-dive interval
each reading belongs to, and a factor labelling
the activity each reading represents. Compared
to the gross.activity slot, the underwater
and diving periods are discerned here.

dive.phases: factor . This identifies each reading
with a particular dive phase. Thus, each read-
ing belongs to one of descent, descent/bottom,
bottom, bottom/ascent, and ascent phases.
The descent/bottom and bottom/ascent levels
are useful for readings which could not unam-
biguously be assigned to one of the other levels.

dive.models: list . This list contains all the details
of the modelling process used to identifies dive

5

phases. Each member of this list consists of
objects of class diveModel , for which important
methods are available.

dry.thr: numeric.

wet.thr: numeric.

dive.thr: numeric. These last three slots store in-
formation given as arguments to calibrat-

eDepth(), documenting criteria used during
calibration.

speed.calib.coefs: numeric. If the object cali-
brated was of class TDRspeed , then this is a
vector of length 2, with the intercept and the
slope of the speed calibration line (see below).

All the information contained in each of these slots
is easily accessible through extractor methods for
objects of this class (see class?TDRcalibrate). An
appropriate show() method is available to display a
short summary of such objects, including the num-
ber of dry and wet periods identified, and the num-
ber of dives detected.

The TDRcalibrate plotTDR() method for these ob-
jects allows visualizing the major wet/dry activities
throughout the record (Figure 2):

> plotTDR(dcalib, concurVars=c("speed", "light"),

+ surface=TRUE)

The dcalib object contains a TDRspeed object in
its tdr slot, and speed is plotted by default in this
case. Additional measurements obtained concur-
rently can also be plotted using the concurVars ar-
gument. Titles for the depth axis and the concur-
rent parameters use separate arguments; the for-
mer uses ylab.depth, while the latter uses concur-
VarTitles. Convenient default values for these are
provided. The surface argument controls whether
post-dive readings should be plotted; it is FALSE

by default, causing only dive readings to be plotted
which saves time plotting and re-plotting the data.
All plot methods use the underlying plotTD() func-
tion, which has other useful arguments that can be
passed from these methods.

A more detailed view of the record can be obtained
by using a combination of the diveNo and the labels
arguments to this plotTDR() method. This is useful
if, for instance, closer inspection of certain dives is
needed. The following call displays a plot of dives 2
through 8 (Figure 3):

Figure 2. The plotTDR() method for TDRcalibrate ob-
jects displays information on the major activi-
ties identified throughout the record (wet/dry
periods here).

> plotTDR(dcalib, diveNo=2:8, what="phases")

The labels argument allows the visualization of the
identified dive phases for all dives selected. The
same information can also be obtained with the ex-
tractDive() method for TDRcalibrate objects:

> extractDive(dcalib, diveNo=2:8)

Other useful extractors include: getGAct() and
getDAct(). These methods extract the whole
gross.activity and dive.activity, respectively,
if given only the TDRcalibrate object, or a partic-
ular component of these slots, if supplied a string
with the name of the component. For exam-
ple: getGAct(dcalib, "activity") would retrieve
the factor identifying each reading with a wet/dry
activity and getDAct(dcalib, "dive.activity")

would retrieve a more detailed factor with informa-
tion on whether the reading belongs to a dive or a
brief aquatic period. Below is a demonstration of
these methods.

getTDR(): This method simply takes the TDRcali-
brate object as its single argument and extracts the
TDR object3:

3In fact, a TDRspeed object in this example

6

Figure 3. The plotTDR() method for TDRcalibrate ob-
jects can also display information on the dif-
ferent activities during each dive record (de-
scent=D, descent/bottom=DB, bottom=B,
bottom/ascent=BA, ascent=A, X=surface).

> getTDR(dcalib)

Time-Depth Recorder data -- Class TDRspeed object

Source File : dives.csv

Sampling Interval (s): 5

Number of Samples : 34199

Sampling Begins : 2002-01-05 11:32:00

Sampling Ends : 2002-01-07 11:01:50

Total Duration (d) : 1.979

Measured depth range : [0, 88]

Other variables : light temperature speed

getGAct(): There are two methods for this generic,
allowing access to a list with details about all
wet/dry periods found. One of these extracts the
entire list (output omitted for brevity):

> getGAct(dcalib)

The other provides access to particular elements of
the list , by their name. For example, if we are in-
terested in extracting only the vector that tells us
to which period number every row in the record be-
longs to, we would issue the command:

> getGAct(dcalib, "phase.id")

Other elements that can be extracted are named“ac-
tivity”, “begin”, and “end”, and can be extracted in
a similar fashion. These elements correspond to the

activity performed for each reading (see ?detPhase

for a description of the labels for each activity), the
beginning and ending time for each period, respec-
tively.

getDAct(): This generic also has two methods; one
to extract an entire data frame with details about all
dive and postdive periods found (output omitted):

> getDAct(dcalib)

The other method provides access to the columns
of this data frame, which are named “dive.id”,
“dive.activity”, and “postdive.id”. Thus, providing
any one of these strings to getDAct, as a second
argument will extract the corresponding column.

getDPhaseLab(): This generic function extracts a
factor identifying each row of the record to a partic-
ular dive phase (see ?detDive for a description of
the labels of the factor identifying each dive phase).
Two methods are available; one to extract the entire
factor, and the other to select particular dive(s), by
its (their) index number, respectively (output omit-
ted):

> getDPhaseLab(dcalib)

> getDPhaseLab(dcalib, 20)

> dphases <- getDPhaseLab(dcalib, c(100:300))

The latter method is useful for visually inspecting
the assignment of points to particular dive phases.
More information about the dive phase identifica-
tion procedure can be gleaned by using the plotDi-
veModel (Figure 4):

> plotDiveModel(dcalib, diveNo=260)

Another generic function that allows the subsetting
of the original TDR object to a single a dive or group
of dives’ data:

> sealX <- extractDive(dcalib, diveNo=c(100:300))

> sealX

Time-Depth Recorder data -- Class TDRspeed object

Source File : dives.csv

Sampling Interval (s): 5

Number of Samples : 1757

Sampling Begins : 2002-01-05 23:40:20

Sampling Ends : 2002-01-06 23:04:45

Total Duration (d) : 0.9753

Measured depth range : [0, 88]

Other variables : light temperature speed

As can be seen, the function extractDive takes a
TDRcalibrate object and a vector indicating the dive

7

Figure 4. Details of the process of identification of dive
phases shown by plotDiveModel , which has
methods for objects of class TDRcalibrate and
diveModel .

numbers to extract, and returns a TDR object con-
taining the subsetted data. Once a subset of data
has been selected, it is possible to plot them and
pass the factor labelling dive phases as the argu-
ment phaseCol to the plot method4:

> plotTDR(sealX, phaseCol=dphases)

With the information obtained during this calibra-
tion procedure, it is possible to calculate dive statis-
tics for each dive in the record.

7 Dive Summaries

A table providing summary statistics for each dive
can be obtained with the function diveStats()

(Figure 5).

diveStats() returns a data frame with the final
summaries for each dive (Figure 5), providing the
following information:

• The time of start of the dive, the end of descent,

4The function that the method uses is actually plotTD, so
all the possible arguments can be studied by reading the
help page for plotTD

and the time when ascent began.

• The total duration of the dive, and that of the
descent, bottom, and ascent phases.

• The vertical distance covered during the de-
scent, the bottom (a measure of the level of
“wiggling”, i.e. up and down movement per-
formed during the bottom phase), and the ver-
tical distance covered during the ascent.

• The maximum depth attained.

• The duration of the post-dive interval.

A summary of time budgets of wet vs. dry pe-
riods can be obtained with timeBudget(), which
returns a data frame with the beginning and end-
ing times for each consecutive period (Figure 5).
It takes a TDRcalibrate object and another argu-
ment (ignoreZ) controlling whether aquatic periods
that were briefer than the user-specified threshold5

should be collapsed within the enclosing period of
dry activity.

These summaries are the primary goal of diveMove,
but they form the basis from which more elaborate
and customized analyses are possible, depending
on the particular research problem. These include
investigation of descent/ascent rates based on the
depth profiles, and bout structure analysis. Some
of these will be implemented in the future.

In the particular case of TDRspeed objects, however,
it may be necessary to calibrate the speed readings
before calculating these statistics.

8 Calibrating Speed Sensor Readings

Calibration of speed sensor readings is performed
using the procedure described by Blackwell et al.
(1999). Briefly the method rests on the principle
that for any given rate of depth change, the lowest
measured speeds correspond to the steepest descent
angles, i.e. vertical descent/ascent. In this case,
measured speed and rate of depth change are ex-
pected to be equal. Therefore, a line drawn through
the bottom edge of the distribution of observations
in a plot of measured speed vs. rate of depth change
would provide a calibration line. The calibrated

5This corresponds to the value given as the wet.thr argument
to calibrateDepth().

8

> tdrXSumm1 <- diveStats(dcalib)

> names(tdrXSumm1)

[1] "begdesc" "enddesc" "begasc" "desctim"

[5] "botttim" "asctim" "divetim" "descdist"

[9] "bottdist" "ascdist" "bottdep.mean" "bottdep.median"

[13] "bottdep.sd" "maxdep" "desc.tdist" "desc.mean.speed"

[17] "desc.angle" "bott.tdist" "bott.mean.speed" "asc.tdist"

[21] "asc.mean.speed" "asc.angle" "postdive.dur" "postdive.tdist"

[25] "postdive.mean.speed" "descD.min" "descD.1stqu" "descD.median"

[29] "descD.mean" "descD.3rdqu" "descD.max" "descD.sd"

[33] "bottD.min" "bottD.1stqu" "bottD.median" "bottD.mean"

[37] "bottD.3rdqu" "bottD.max" "bottD.sd" "ascD.min"

[41] "ascD.1stqu" "ascD.median" "ascD.mean" "ascD.3rdqu"

[45] "ascD.max" "ascD.sd"

> tbudget <- timeBudget(dcalib, ignoreZ=TRUE)

> head(tbudget, 4)

phase.no activity beg end

1 1 L 2002-01-05 11:32:00 2002-01-05 11:39:40

2 2 W 2002-01-05 11:39:45 2002-01-06 06:30:00

3 3 L 2002-01-06 06:30:05 2002-01-06 17:01:10

4 4 W 2002-01-06 17:01:15 2002-01-07 05:00:30

> trip.labs <- stampDive(dcalib, ignoreZ=TRUE)

> tdrXSumm2 <- data.frame(trip.labs, tdrXSumm1)

> names(tdrXSumm2)

[1] "phase.no" "activity" "beg" "end"

[5] "begdesc" "enddesc" "begasc" "desctim"

[9] "botttim" "asctim" "divetim" "descdist"

[13] "bottdist" "ascdist" "bottdep.mean" "bottdep.median"

[17] "bottdep.sd" "maxdep" "desc.tdist" "desc.mean.speed"

[21] "desc.angle" "bott.tdist" "bott.mean.speed" "asc.tdist"

[25] "asc.mean.speed" "asc.angle" "postdive.dur" "postdive.tdist"

[29] "postdive.mean.speed" "descD.min" "descD.1stqu" "descD.median"

[33] "descD.mean" "descD.3rdqu" "descD.max" "descD.sd"

[37] "bottD.min" "bottD.1stqu" "bottD.median" "bottD.mean"

[41] "bottD.3rdqu" "bottD.max" "bottD.sd" "ascD.min"

[45] "ascD.1stqu" "ascD.median" "ascD.mean" "ascD.3rdqu"

[49] "ascD.max" "ascD.sd"

Figure 5. Per-dive summaries can be obtained with functions diveStats(), and a summary of time budgets with
timeBudget(). diveStats() takes a TDRcalibrate object as a single argument (object dcalib above,
see text for how it was created).

9

speeds, therefore, can be calculated by reverse esti-
mation of rate of depth change from the regression
line.

diveMove implements this procedure with function
calibrateSpeed(). This function performs the fol-
lowing tasks:

1. Subset the necessary data from the record.
By default only data corresponding to depth
changes > 0 are included in the analysis, but
higher constraints can be imposed using the
z argument. A further argument limiting the
data to be used for calibration is bad , which is a
vector with the minimum rate of depth change
and minimum speed readings to include in the
calibration. By default, values > 0 for both
parameters are used.

2. Calculate the binned bivariate kernel density
and extract the desired contour. Once the
proper data were obtained, a bivariate normal
kernel density grid is calculated from the rela-
tionship between measured speed and rate of
depth change (using the KernSmooth package).
The choice of bandwidths for the binned kernel
density is made using bw.nrd . The contour.level
argument to calibrateSpeed() controls which
particular contour should be extracted from the
density grid. Since the interest is in defining a
regression line passing through the lower densi-
ties of the grid, this value should be relatively
low (it is set to 0.1 by default).

3. Define the regression line passing through the
lower edge of the chosen contour. A quantile
regression through a chosen quantile is used for
this purpose. The quantile can be specified us-
ing the tau argument, which is passed to the
rq() function in package quantreg. tau is set
to 0.1 by default.

4. Finally, the speed readings in the TDR object
are calibrated.

As recognized by Blackwell et al. (1999), the ad-
vantage of this method is that it calibrates the in-
strument based on the particular deployment con-
ditions (i.e. controls for effects of position of the
instrument on the animal, and size and shape of the
instrument, relative to the animal’s morphometry,
among others). However, it is possible to supply
the coefficients of this regression if they were esti-
mated separately; for instance, from an experiment.
The argument coefs can be used for this purpose,

Figure 6. The relationship between measured speed and
rate of depth change can be used to calibrate
speed readings. The line defining the calibra-
tion for speed measurements passes through
the bottom edge of a chosen contour, extracted
from a bivariate kernel density grid.

which is then assumed to contain the intercept and
the slope of the line. calibrateSpeed() returns a
TDRcalibrate object, with calibrated speed readings
included in its tdr slot, and the coefficients used for
calibration.

For instance, to calibrate speed readings using the
0.1 quantile regression of measured speed vs. rate
of depth change, based on the 0.1 contour of the bi-
variate kernel densities, and including only changes
in depth > 1, measured speeds and rates of depth
change > 0:

> vcalib <- calibrateSpeed(dcalib, tau=0.1,

+ contour.level=0.1,

+ z=1, bad=c(0, 0),

+ cex.pts=0.2)

This call produces the plot shown in Figure 6, which
can be suppressed by the use of the logical argu-
ment plot . Calibrating speed readings allows for
the meaningful interpretation of further parameters
calculated by diveStats(), whenever a TDRspeed
object was found in the TDRcalibrate object:

• The total distance travelled, mean speed, and

10

diving angle during the descent and ascent
phases of the dive.

• The total distance travelled and mean speed
during the bottom phase of the dive, and the
post-dive interval.

9 Bout Detection

Diving behaviour often occurs in bouts for sev-
eral species, so diveMove implements procedures for
defining bout ending criteria (Langton et al. 1995;
Luque and Guinet 2007). Please see ?bouts2.mle

and ?bouts2.nls for examples of 2-process models.

10 Summary

The diveMove package provides tools for analyz-
ing diving behaviour, including convenient methods
for the visualization of the typically large amounts
of data collected by TDRs. The package’s main
strengths are its ability to:

1. identify wet vs. dry periods,

2. calibrate depth readings,

3. identify individual dives and their phases,

4. summarize time budgets,

5. calibrate speed sensor readings,

6. provide basic summaries for each dive identified
in TDR records, and

7. provide tools for identification of dive bout end
criteria.

Formal S4 classes are supplied to efficiently store
TDR data and results from intermediate analysis,
making the retrieval of intermediate results readily
available for customized analysis. Development of
the package is ongoing, and feedback, bug reports,
or other comments from users are very welcome.

Acknowledgements

Many of the ideas implemented in this package de-
veloped over fruitful discussions with my mentors
John P.Y. Arnould, Christophe Guinet, and Edward
H. Miller. I would like to thank Laurent Dubroca

who wrote draft code for some of diveMove’s func-
tions. I am also greatly endebted to the regular
contributors to the R-help newsgroup who helped
me solve many problems during development.

References

S. Blackwell, C. A. Haverl, B. J. Le Boeuf, and
D. P. Costa. A method for calibrating swim-speed
recorders. Mar Mamm Sci, 15(3):894–905, 1999.

S. D. Langton, D. Collett, and R. M. Sibly. Split-
ting behaviour into bouts; a maximum likelihood
approach. Behaviour, 132:781–799, 1995.

S. P. Luque. Diving behaviour analysis in R. R
News, 7:8–14, 2007.

S. P. Luque and R. Fried. Recursive filtering for zero
offset correction of diving depth time series with
gnu r package divemove. PLoS ONE, 6(1):e15850,
2011. doi: doi:10.1371/journal.pone.0015850.

S. P. Luque and C. Guinet. A maximum likelihood
approach for identifying dive bouts improves ac-
curacy, precision, and objectivity. Behaviour, 144:
1315–1332, 2007.

11

	Introduction
	Features
	Preliminary Procedures
	How to Represent TDR Data?
	Identification of Activities at Various Scales
	How to Represent Calibrated TDR Data?
	Dive Summaries
	Calibrating Speed Sensor Readings
	Bout Detection
	Summary

