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1 Introduction

This package provides general tools for the discovery and analysis of statistical dependencies be-
tween co-occurring measurement data [5], including well-established models such as probabilistic
canonical correlation analysis and its regularized variants [I} [2, 4, [9]. Probabilistic framework deals
rigorously with the uncertainties associated with small sample sizes, and allows incorporation of
prior information in the analysis through Bayesian priors [6]. The applicability of the models has
been demonstrated in case studies [4 [9].

Dependency models help to discover regularities and interactions that are not seen in individual
data sets. Multiple, complementary views of the same objects are available in many fields includ-
ing computational biology, economics, linguistics, neuroinformatics, open data initiatives, social
sciences, and other domains. Demand for methods to analyze such data is increasing with the
availability of co-occurring observations. Open access implementations of the algorithmic solutions
help to realize the full potential of these information sources. Your feedback and contributions are
welcome[1]

1.1 Installation

Install dmt from within R with ’install.packages(’dmt”)’. This will fetch and install the package
automatically. Source code of the latest stable release is available at CRANE Source code of the
development version is available at R—forgeﬂ

*leo.lahti@iki.fi

1See the project page at R-Forge: http://dmt.r-forge.r-project.org/
2http://cran.r-project.org/web/packages/dmt /index.html
Shttp://dmt.r-forge.r-project.org/



2 Probabilistic dependency modeling framework

The fit.dependency.model function implements the probabilistic dependency modeling framework
presented in [2] and subsequent extensions [1l Bl [M]. The latent variable model assumes that the
two data sets, X and Y, can be decomposed in shared and data set-specific components (Figure [1]).
We provide tools to discover these components.
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Figure 1: Graphical description of the shared latent variable model with observations X,Y and a
shared latent variable Z.

The shared signal between two (multivariate) observations x,y is modeled with a shared latent
variable z. The shared component can have different manifestation in each data set, described by
the linear transformations W, and W,. A standard Gaussian model for the shared latent variable
z ~ N(0,I) and data set-specific effects gives the following model:

X ~Wyz+e,

(1)
Y ~Wyz+ey
The data set-specific effects are modelled by multivariate Gaussians e ~ N (0, ¥ ) with covariances
V., ¥, respectively.

Particular constraints on the model structure can be set through prior parameters in the fit.dependency.model
function. For instance, it is possible to tune the dimensionality of the latent variable, require non-
negativity for W, or to set particular structure on the marginal covariances. An overview is provided

below.

2.1 Dependency detection algorithm

The modeling framework described in Section 2| is implemented in the fit.dependency.model func-
tion. To use the default method to detect dependencies between two data sets, X and Y, try:

> library(dmt)
> data(modelData) # load example data X, Y
> model <- fit.dependency.model (X, Y)

2.2 Regularized dependency detection

Various options are available to tune the model structure and to guide dependency modeling through
Bayesian priors implemented in the ’priors’ option in the fit.dependency.model function [4]. For



instance, the following will fit a model with W, = W,,, with non-negative (but otherwise uncon-
strained) W, W, and with full marginal covariances (¥,, ¥, ) for the dataset-specific effects.

> model <- fit.dependency.model(X, Y,
+ priors = list(Nm.wx.wy.sigma = O, Nm.wx.wy.mean = 1, W = .
+ marginalCovariances = "full")

2.2.1 Available regularization options

Here is a brief summary of the available options. See help(fit.dependency.model) for further options
and examples.

zDimension Dimensionality of the latent variable, which is used to characterize the latent effects.
By default, full dimensionality is used, but in many applications the relevant dependencies can be
described with lower-dimensional representation of the shared effects.

W By default, no constraints are applied on W, and W,. However, non-negative solutions can be
obtained by setting an exponential prior with rate parameter W: W, ~ exp(—WW,(i)) for each
element ¢ of the matrix W,, and respectively for W,. Small values of the rate parameter enforce
non-negativity but are otherwise non-informative.

marginalCovariances Dataset-specific effects can come from Gaussian distribution with either

full, diagonal, isotropic, or identical isotropic covariance structure. The last option refers to a
model with ¥, =¥,

matched If matched = TRUE, it is possible to tune the relationship between W, and W,. See
Nm.wx.wy.sigma.

Nm.wx.wy.sigma Assuming that W, = TW,, it is possible to tune the relationship between W,
and W, through a prior on T. This can be useful for guiding the modeling to focus on certain
types of dependencies, and to avoid overfitting. Here, a matrix normal distribution is applied:
T ~ N, (H,ol,ol), with mean and covariance H = Nm.wx.wy.mean, ol = Nm.wz.wy.sigmal,
respectively. By default, Nm.wx.wy.mean = I. The prior can be tuned through o¢. When ¢ = 0,
W = W,; when 0 — oo, the relationship between W, and W), is not constrained.

2.3 Special cases

Special cases of the model include probabilistic versions of canonical correlation analysis, factor
analysis, and principal component analysis, and their regularized variants.

Probabilistic CCA (pCCA) assumes full covariance matrices ¥,, ¥, and arbitrary linear trans-
formations W, W, that maximize the likelihood of the model in Eq. Full marginal covariances
provide the most detailed model for the data set specific effects. The connection of this latent
variable model and the traditional canonical correlation analysis has been established in [2].

Probabilistic SimCCA (pSimCCA) is equivalent to pCCA, but has the additional constraint
W, = W,. This less flexible model is more robust against overfitting when the data is scarce [4].

Probabilistic factor analysis (pFA) is equivalent to pCCA, except diagonal covariances W,
V,. The simplified structure regularizes the solution and can potentially reduce overfitting in
applications. The model is identical to concatenating X, Y, and fitting ordinary probabilistic
factor analysis on the concatenated data set. In addition, a special case is implemented where each



covariance matrix ¥ is isotropic (but not necessarily identical). The standard probabilistic factor
analysis model for a single data set is also available [7].

Probabilistic PCA (pPCA) is obtained with identical isotropic covariances ¥, = ¥, = ol.
This model is identical to concatenating X, Y, and fitting ordinary probabilistic PCA on the
concatenated data. The standard probabilistic PCA model for a single data set is also available [8].

2.4 Interpreting the results

The fit.dependency.model function provides an object of DependencyModel class. To retrieve options
and model parameters corresponding to the model in Equation [I] investigate the output as follows:

> W <- getW(model) # model parameters Wx, Wy
> psi <- getPhi(model) # model parameters Psix, Psiy
> Z <- getZ(model) # ML-estimate of the shared latent variable

For a full list of model output, including the original inputs for function call, check:
> slotNames (model)
[1] |lel l|phi n llscorell Ilmethodll "Params" lldatall lle

For detailed explanation of the output, see help(fit.dependency.model).

A comprehensive set of examples with toy data is available onlineﬂ

2.5 Parameter estimation

Model parameters are estimated with EM algorithm. Conventional optimization methods are used
when no analytical solution exists for particular variables.

3 Dependency-based dimensionality reduction

The drCCA algorithm [9] provides tools for dimensionality reduction and data fusion that retains
the variation shared between the original data sources, while reducing data set-specific effects based
on a linear projections. The algorithms combine data sets with co-occurring samples into a common
representation of low dimensionality based on linear transformations through generalized CCA. This
helps to discover dependencies between multiple data sets (two or more) simultaneously. Regular-
ization options and automated tools are available to select the final dimensionality of the combined
data set.

The following example shows how to perform dependency-based dimension reduction on two data
sets (samples x features matrices).

> data(expdatal)
> data(expdata2)
> drcca <- drCCAcombine(list(expdatal, expdata2)) # data fusion

4http://dmt.r-forge.r-project.org/tests/complete/)



[1] "Number of input matrices"

(11 2

[1] "Number of test and training matrices created"
(11 3

[1] "Normal gCCA"

[1] 2000 12

> r <- regCCA(list(expdatal,expdata2)) # regularized CCA

[1] "Normal gCCA"

> shared <- sharedVar(list(expdatal,expdata2),r,4) # shared effects
> #specific <- specificVar(list(expdatal,expdata2),r,4) # data set-specific effects
> #tmp <- plotVar(list(expdatal,expdata2),r,c(1:2),4) # visualization

Linear projections are identified for each individual data set, and a combined representation of the
dependent components is constructed on a lower-dimensional space. See the original publication
for further details [9):
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Details

e Licensing terms: the package is licensed under FreeBSD open software license.

e Citing DMT: When using the package, please cite [0l [6]; for particular algorithms (drCCA,
fit.dependency.model, etc.), see also additional citation information in the documentation.

This document was written using:
> sessionInfo()

R version 2.15.1 Patched (2012-08-09 r60217)
Platform: x86_64-unknown-linux-gnu (64-bit)

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
[6] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=C LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:



[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] dmt_0.8.11 MASS_7.3-20 Matrix_1.0-7 lattice_0.20-6
[5] mvtnorm_0.9-9992

loaded via a namespace (and not attached):
[1] grid_2.15.1 tools_2.15.1
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