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Abstract

Estimation of simple descriptive statistics becomes cumbersome, if
the sample cannot be considered to be a (completely) random draw
from the population for which descriptives should be interpreted. This
occurs in weighted samples or clustered samples. The same is true
if the variables of interest stem from a multiple imputation process
and occur, for example, as plausible values. In the estimation of
standard error, we then have to account for two possible sources of
uncertainty: first the uncertainty due to a clustered sample, and sec-
ond the uncertainty due to multiple imputed data. This tutorial de-
scribes some basic analyses to compute descriptives in complex survey
designs using the R package eatRep, which was designed mainly to
supply replications methods in R. Such methods are appropriate to
analyze both clustered and multiple imputed data as well. To date,
the Jackknife-1 (JK1), Jackknife-2 (JK2) and the balanced repeated
replicates (BRR) methods are supported. Some functions overlap with
methods provided in the computer software WesVar (Westat, 2000)—
in this case the package only allows for executing these analyses in R,
which may be easier to implement due to a syntax related interface.
Some methods in WesVar are not completely implemented in eatRep

yet, for example bootstrapping methods. For bootstrapping, alterna-
tive R packages (e.g. boot) may be used. However, some methods are
only implemented in eatRep, for example analyses for nested imputed
data, linear logistic regression models, or trend analyses. Examples
considering the latter one are not yet included in this vignette. The
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examples 6 to 6d from the help page of the defineModel function
in the eatModel package contain some exhaustive demonstrations of
trend analyses.

eatRep heavily relies on the survey package (Lumley, 2012) which
functions has been extended by methods for multiple imputed data.
While the functional principle of survey is based on replication of con-
ventional analyses, eatRep is based on replication of survey analyses
to take multiple imputed data into account.

1 Introduction

In a completely random sample, the mean

x̄ = n−1

n∑
i=1

(xi) (1)

is an unbiased estimate for the corresponding mean

µ = N−1

N∑
i=1

(xi) (2)

of the underlying population the sample was drawn from. This does not hold
for dispersion measures (variance and standard deviation), as the variance in
a sample is always less than the variance in the population the sample was
drawn from. The transformation, however, is very easy made: The variance
in a sample is multiplied by n/(n− 1) to obtain population variance, where
n is the sample size. Based on

σ2 = N−1

N∑
i=1

(xi − µ)2 (3)

for the population with N elements, we apply

s2 = (n− 1)−1

n∑
i=1

(xi − x̄)2 (4)

to estimate population variance from a sample of size n. In a weighted sample,
i.e. if the population weights differ between examinees in the sample, mean
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and variance may be estimated by incorporating these population weights.
(In a completely random sample, these weights equal 1 for each examinee.)

x̄w =
n∑

i=1

(wi

W
xi

)
, (5)

s2w =
n∑

i=1

wi

W − 1
(xi − x̄)2, (6)

where wi is the case weight of the ith person, and W is the sum over all case
weights, i.e. W =

∑
wi. To summary, the crucial point in the estimation

of population variance estimates is the factor n/(n− 1). Unfortunately, this
factor only applies when we sample (conditionally) independently from the
population, as in completely random samples or weighted random samples.
In a clustered sample, however, where schools or classes are sampling units
instead of single persons, the relationship between sample and population
variance is not so clear at all. The reason is that persons within a cluster
(for example pupils in a class) often share a common variance. The sample
variance underestimates the population variance, but more severely than in-
dicated by the factor n/(n−1). To estimate the relationship between sample
and population variance, it is necessary to estimate the variance explained
by the cluster.

Without taking the cluster structure into account, we would not only ob-
tain biased variance estimates but biased standard errors, too (Luke, 2009).
This problem occurs in the same way for estimation of frequency tables,
quantiles or estimates of (linear) regression models. To gain unbiased es-
timates, several replication methods were introduced, which based on the
same principle: To estimate the proportion by which the variance in the
sample is underestimated due to a clustered structure (Lumley, 2004). In the
Jackknife-2 (JK2) procedure this is implemented by reproducing the original
sample to several replicates. In each replicate one clustering unit (e.g. one
class) of only one primary sampling unit (PSU) is replaced by another class,
which therefore occurs two times in the sample. Each replicate is analyzed
if it would have been a completely random sample. Recognize what is to be
expected then: If the variance is explained partially by the clusters, removing
one sampling unit should decrease the variance of the sample slighty. Con-
versely, the point estimates of each replication sample should vary slightly.
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The variance in the point estimates between the replicates is used to esti-
mate the corresponding standard errors. Otherwise, if there is no variance
between clusters, removing one cluster would have no effect on the variance
estimate, and the point estimates between replicates would have no or only
very little variance. In this case replication methods will result in exactly
the same variance estimates and standard errors as they would follow from
conventional analysis. The balanced repeated replicates (BRR) method is
quite similar. The original sample is reproduced to several replicates. In
each replicate one clustering unit (e.g. one class) of each PSU is replaced by
another class, which therefore occurs two times in the sample. Each repli-
cate then is analyzed if it would have been a completely random sample. For
further details, see Rust and Rao (1996).

For the purpose of illustration, assume a simple population mean which
has to be estimated from a completely random sample of N = 1000. To
estimate the standard error of this mean, we may apply a rather laborious
method: to draw 100 samples (with replacement) from our original sample,
each of N = 1000, and compute the mean in each sample. The standard
deviation of the 100 mean estimates is the standard error of the mean. Of
course, this bootstrap method is far to cumbersome, as in a random sample
the standard error can be estimated in a much more easier way. However,
in a clustered sample, an extension of this bootstrap method is appropriate
indeed. Several software (Westat, 2000) and free R packages such as survey

(Lumley, 2012) do allow for several replication methods.

The situation is becoming still more complicated when the variables in
the data to be analysed occur as (multiple) imputed data, for example as
plausible values. Where missing values may cause biased parameters, analy-
ses are conducted with imputed data. Often, the original data which includes
missing values is reproduced several times, whereas the missing entries are
filled with a set of plausible values, which results in several imputed data
sets. To gain unbiased parameter estimates, the analyses are conducted for
each data set separately and pooled afterwards according to Rubin (1987).

If we have both, a clustered sample with multiple imputed data, both
methods have to be combined. This leads to a replication of replications.
Analyses have to be repeated to account for the clustered structure, and the
results of these replications have to be repeated to account for multiple im-
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puted data. In the following, we refer to “cluster replicates” and “imputation
replicates” to differentiate between both.

2 Estimate some population descriptives

In this example, we use some artificial data from the context of educational
research. We may think of a stratified clustered sample of German fourth-
grade primary school students whose reading and listening competencies are
measured. Proficiency estimates obtained from a Item response Theory (IRT)
marginal model are included as plausible values. Each plausible value may
be recognized as an imputation of the latent competence construct. The data
are represented in the long format.

> library(eatRep)
> data(lsa)
> str(lsa, give.attr = FALSE)

'data.frame': 90216 obs. of 22 variables:
$ year : num 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 ...
$ idstud : Factor w/ 7518 levels "P0001","P0002",..: 2362 175 1283 783 728 2122 732 2429 2899 2191 ...
$ wgt : num 2.51 5.19 6.1 4.71 4.42 ...
$ jkzone : num 18 86 79 5 3 8 3 20 13 12 ...
$ jkrep : num 1 0 1 0 1 1 1 1 0 0 ...
$ imp : num 3 3 2 2 2 2 1 2 3 2 ...
$ nest : num 1 2 1 1 2 1 2 1 2 2 ...
$ country : Factor w/ 3 levels "LandA","LandB",..: 2 3 2 3 3 2 3 2 1 2 ...
$ sex : Factor w/ 2 levels "female","male": 2 2 1 2 2 2 1 2 1 1 ...
$ ses : num 24.8 28.5 23.5 64.4 70.3 ...
$ mig : num 0 1 0 0 0 0 0 0 0 1 ...
$ domain : Factor w/ 2 levels "listening","reading": 1 1 1 1 1 1 1 1 1 1 ...
$ score : num 342 317 286 327 360 ...
$ comp : int 1 1 1 1 1 1 1 1 1 1 ...
$ failMin : num 1 1 1 1 1 1 1 1 1 1 ...
$ passReg : num 0 0 0 0 0 0 0 0 0 0 ...
$ passOpt : num 0 0 0 0 0 0 0 0 0 0 ...
$ leScore : num 1.21 1.21 1.21 1.21 1.21 ...
$ leComp : num 0.00582 0.00582 0.00582 0.00582 0.00582 ...
$ leFailMin: num 0.00494 0.00494 0.00494 0.00494 0.00494 ...
$ lePassReg: num 0.00601 0.00601 0.00601 0.00601 0.00601 ...
$ lePassOpt: num 0.00141 0.00141 0.00141 0.00141 0.00141 ...

Requesting the data structure provides us with information about the
number and type of variables and the number of examinees. "idstud" de-
notes the year of the assessment, "idstud" is a person identifier for 7,518
distinct examinees, and "wgt" a person weight. "JKZone" and "JKrep" de-
note jackknifing variables which contains information about which unit has
to be replaced by which other unit in which replicate of the original data.
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The next two variables, "imp" and "nest" describe the multiple imputed
structure of the data. The data stem from a nested multiple imputation
model with 2 nests and 3 imputations in each nest. The principles of nested
imputations will be elucidated later; for the moment, we may content ourself
with data from the first nest only, i.e. we split the data and only con-
sider cases for which nest = 1. "country" denotes the country the person
stems from, "sex" denotes each person’s sex, "ses" is each person’s socio-
economical status, "mig" is an indicator for migration background. "domain"

denotes whether the corresponding score value is related to reading or lis-
tening. We may think of "score" as the the plausible value estimate for the
reading or listening competence. Hence, if nest = 1 and imputation = 3
and "domain" equals ”reading”, the value in the "score" column refers to the
third plausible value in the first nest for the reading competence. "comp"

is a distinct competence level for each person, where 1 corresponds to the
lowest competence level, and 5 corresponds to the highest competence level.
"failMin" is an indicator which equals 1 if the examinee fails to fulfill the
minimal standard, 0 otherwise. "passReg" is an indicator which equals 1
if the examinee fulfills or outperforms the regular standard, and "passOpt"

is an indicator which equals 1 if the examinee fulfills the optimal standard.
The following variables beginning with ”le” denote the linking errors of each
criteria, i.e. "lePassreg" is the linking error for the indicator of fulfilling the
regular standard.

Please note that the "score" variable contains the three imputations of
the reading competence. Hence, each individual is represented in several
rows. This is quite usual if multiple imputed data is presented in a long
format dataset. eatRep strictly requires the long format. To transform wide-
format data frame into long-format data frames (and vice versa), use the
reshape2 package. Please note further that the dataset does not contain any
replicates, only the information required for generating them are captured in
the "JKZone" and "JKrep" variables.

2.1 Populations means, standard deviations, variances
and mean differences

We now want to compute the means by each country, considering the clus-
tered structure as well as the multiple imputed data structure. The replicates
do not need to be created separately, as they will be generated in each analy-
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sis automatically. Even in large data sets this takes only a few seconds. First
we create a subset which only contains reading data from the first nest from
the year 2010. The analysis then is conducted with this subset.

> read <- subset(lsa, domain == "reading")
> readN1<- subset(read, nest == 1 )
> read10<- subset(readN1, year == 2010 )
> means <- jk2.mean(datL = read10, ID = "idstud", wgt = "wgt", type = "JK2",
+ PSU = "jkzone", repInd = "jkrep", imp = "imp", groups = "country",
+ dependent = "score")

1 analyse(s) overall according to: 'group.splits = 1'.
Assume unnested structure with 3 imputations.
Create 62 replicate weights according to JK2 procedure.

When applying the jackknife method, the primary sampling unit (PSU)
often is the jackknife zone (jkzone), and the replication indicator often is the
jackknife replicate indicator (jkrep). While the function is operating, some
additional information is displayed on console. First we see that only one
analysis is run according to ’group.splits = 1’. We will subsequently ex-
emplify this enigmatic message. Further, we see that jk2.mean assumes an
“unnested”, i.e. a structure with three imputations. This refers to what we’ve
called “imputation replicates”. The output then speaks about 62 replicate
weights which are created due to 62 distinct jackknifing zones in the JKZone
variable. This information refers to the “cluster replicates” and implies that
the subsequent analysis has to be repeated 62 times for each imputation.
Hence, 3 × 62 = 186 analyses are run overall.

In each of the 62 replication samples, one unit (e.g. school) of a cer-
tain jackknifing zone is missing and the weights of the other school within
the same zone are doubled. The data in all other zones remain unchanged.
The analyses are repeated 62 times, using the same plausible value as the
dependent variable. Only the weights vary between the “cluster replicates”:
each of the 62 replicates once a time is used as the weighting variable. Each
of the 62 analysis revealed slighty different results. This variation is used
to estimate the sampling variance due to the clustered structure which then
is used to compute the standard error, which is pooled across 62 “cluster
replicates”. When finished, the analysis approaches the second “imputation
replicate” and switches to the second plausible value which now is used as the
dependent variable in 62 analyses due to the 62 “cluster replicates”. After
all, three pooled estimates and three pooled standard errors resulted which
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differ slightly in each “imputation replicate”. The three estimates and stan-
dard errors are pooled once again, this time according to Rubin (1987). To
sum up, the pooled results are pooled again to account for both: multiple
imputed data in a clustered sample.

The little dots continuously appearing on the console therefore refer to
“imputation replicates” and are intended to work as a rough progress bar.
Each dot represents one “imputation replication”. When the procedure fin-
ished, the results are pooled in the case of more than one imputation.

The output is a list of data frames which is not intended to be inspected
by the user. Instead, a reporting function transform the raw output in a more
user-friendly format which can be saved as an Excel or csv file for further
treatment. The reporting function has an additional argument add which
can be used to “enrich” the output by further columns which contain, for ex-
ample, the domain. The raw output does not include any information about
the domain. The reporting function may be used as follows:

> res01 <- report(jk2.out = means, add = list(domain = "reading"))
> print(res01, digits = 4)

group depVar modus comparison parameter country domain est p
1 LandA score JK2.mean <NA> mean LandA reading 509.76 0.000e+00
2 LandA score JK2.mean <NA> sd LandA reading 92.19 8.378e-277
3 LandB score JK2.mean <NA> mean LandB reading 472.60 0.000e+00
4 LandB score JK2.mean <NA> sd LandB reading 100.34 3.421e-205
5 LandC score JK2.mean <NA> mean LandC reading 502.46 0.000e+00
6 LandC score JK2.mean <NA> sd LandC reading 98.26 7.058e-300

se
1 4.833
2 2.593
3 6.493
4 3.283
5 4.613
6 2.655

For each subpopulation denoted by the groups statement (here: LandA,
LandB and LandC), each dependent variable (here: only the reading compe-
tence ”score”), each parameter and each coefficient (i.e., the estimate and the
corresponding standard error) the corresponding value is given. Can we see
see how the results would change if we do not consider the clustered struc-
ture? Yes, we can. We simply leave out the jackknifing arguments JKZone and
JKrep. The type argument then is automatically ignored likewise, whether
specified or not. The results will be pooled only due to multiple imputed data:
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> means <- jk2.mean(datL = read10, ID = "idstud", wgt = "wgt",
+ imp = "imp", groups = "country", dependent = "score")

1 analyse(s) overall according to: 'group.splits = 1'.
Assume unnested structure with 3 imputations.

> res02 <- report(jk2.out = means, add = list(domain = "reading"))
> print(res02, digits = 4)

group depVar modus comparison parameter country domain est p se
1 LandA score CONV.mean <NA> mean LandA reading 509.76 0 2.686
2 LandA score CONV.mean <NA> sd LandA reading 92.15 NaN NaN
3 LandB score CONV.mean <NA> mean LandB reading 472.60 0 2.906
4 LandB score CONV.mean <NA> sd LandB reading 100.31 NaN NaN
5 LandC score CONV.mean <NA> mean LandC reading 502.46 0 3.031
6 LandC score CONV.mean <NA> sd LandC reading 98.22 NaN NaN

We see that the means are completely unaffected, but the standard errors
for the mean estimates are considerably lower. (Standard errors for standard
deviations are not implemented yet.) If we decide to leave out the weights
as well, we would additionally expect to receive different means now:

> means <- jk2.mean(datL = read10, ID = "idstud", imp = "imp", groups = "country",
+ dependent = "score")

1 analyse(s) overall according to: 'group.splits = 1'.
Assume unnested structure with 3 imputations.

> res03 <- report(jk2.out = means, add = list(domain = "reading"))
> print(res03, digits = 4)

group depVar modus comparison parameter country domain est p se
1 LandA score CONV.mean <NA> mean LandA reading 508.60 0 2.700
2 LandA score CONV.mean <NA> sd LandA reading 92.28 NaN NaN
3 LandB score CONV.mean <NA> mean LandB reading 474.87 0 2.939
4 LandB score CONV.mean <NA> sd LandB reading 100.78 NaN NaN
5 LandC score CONV.mean <NA> mean LandC reading 503.65 0 2.857
6 LandC score CONV.mean <NA> sd LandC reading 97.41 NaN NaN

If we additionally decide to ignore the imputations and treat, for exam-
ple, the first plausible value as it would have been a fully observed measure
of the latent competency, the function call would be the following:

> means <- jk2.mean(datL = subset(read10,imp==1), ID = "idstud",
+ imp = "imp", groups = "country", dependent = "score")

1 analyse(s) overall according to: 'group.splits = 1'.
Assume unnested structure with 1 imputations.

> res04 <- report(jk2.out = means, add = list(domain = "reading"))
> print(res04, digits = 4)

group depVar comparison parameter country domain est p se
1 LandA score NA mean LandA reading 508.71 0 2.626
2 LandA score NA sd LandA reading 91.07 NA NA
3 LandB score NA mean LandB reading 475.42 0 2.806
4 LandB score NA sd LandB reading 99.73 NA NA
5 LandC score NA mean LandC reading 503.54 0 2.770
6 LandC score NA sd LandC reading 97.67 NA NA
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The estimation of standard errors now no longer accounts for the un-
certainty due to imputation. Furthermore, also the mean estimates have
changed as the estimation now is based only on the first plausible value.

Two possible interesting features should be emphasized in the following.
First assume that we do not have one, but two grouping variables, namely
country and sex. As we have three countries and two sex values, the whole
population is splitted into 3 × 2 = 6 subpopulations for which descriptives
can be requested. If we additionally are interested in the descriptives of
the whole population or the descriptives within each country, but together
for both sex groups, we can use the group.splits argument to particularly
specify the groups we are interested in. Let us consider for example the two
grouping variables country and sex. If group.splits equals 2 (the default,
i.e., the number of grouping variables), descriptives for the 3×2 = 6 subpop-
ulations are computed. If group.splits is 1:2, descriptives for each country
(e.g., across sex) and each sex group (e.g. across countries) additionally are
computed. If group.splits is 0:2, descriptives also for the whole population
(e.g. across sex and countries) are computed.

The second feature is about mean differences. Suppose you are interested
in sex differences within each country. The grouping variable for which mean
differences should be computed has to be specified in the group.differences.by
argument. For a grouping variable with K levels, all K!/(2!× (K−2)!) com-
parisons are computed. It is important that the group defined in group.differences.by

also has to occur in the groups statement, otherwise group.differences.by

will be ignored. To estimate sex differences within each country, sex and
country have to be part of the groups statement, whereas only sex has to be
used in the group.differences.by argument. Both features are illustrated
in the following example:

> means <- jk2.mean(datL = read10, ID = "idstud", wgt = "wgt", type = "JK2",
+ PSU = "jkzone", repInd = "jkrep", imp = "imp", groups = c("sex","country"),
+ group.splits = c(0,2), group.differences.by = "sex", dependent = "score")

2 analyse(s) overall according to: 'group.splits = 0 2'.

analysis.number hierarchy.level groups.divided.by group.differences.by
1 1 0 <NA>
2 2 2 sex + country sex

Assume unnested structure with 3 imputations.
Create 62 replicate weights according to JK2 procedure.

10



> res05 <- report(jk2.out = means, add = list(domain = "reading"))
> print(res05, digits = 4)

group depVar modus comparison parameter
1 country=LandA____female.vs.male score JK2.mean groupDiff mean
2 country=LandB____female.vs.male score JK2.mean groupDiff mean
3 country=LandC____female.vs.male score JK2.mean groupDiff mean
4 female_LandA score JK2.mean <NA> mean
5 female_LandA score JK2.mean <NA> sd
6 female_LandB score JK2.mean <NA> mean
7 female_LandB score JK2.mean <NA> sd
8 female_LandC score JK2.mean <NA> mean
9 female_LandC score JK2.mean <NA> sd
10 male_LandA score JK2.mean <NA> mean
11 male_LandA score JK2.mean <NA> sd
12 male_LandB score JK2.mean <NA> mean
13 male_LandB score JK2.mean <NA> sd
14 male_LandC score JK2.mean <NA> mean
15 male_LandC score JK2.mean <NA> sd
16 wholeGroup score JK2.mean <NA> mean
17 wholeGroup score JK2.mean <NA> sd

sex country domain es est p se
1 female.vs.male LandA reading -0.16894 -15.446 3.903e-02 7.484
2 female.vs.male LandB reading -0.09655 -9.694 1.682e-01 7.035
3 female.vs.male LandC reading -0.20294 -19.847 4.592e-03 7.002
4 female LandA reading NA 518.091 0.000e+00 6.118
5 female LandA reading NA 88.410 4.241e-117 3.843
6 female LandB reading NA 477.369 0.000e+00 8.081
7 female LandB reading NA 100.967 7.475e-117 4.394
8 female LandC reading NA 512.126 0.000e+00 5.786
9 female LandC reading NA 98.329 3.861e-152 3.743
10 male LandA reading NA 502.644 0.000e+00 5.964
11 male LandA reading NA 94.750 8.862e-172 3.391
12 male LandB reading NA 467.674 0.000e+00 6.631
13 male LandB reading NA 99.518 6.050e-151 3.803
14 male LandC reading NA 492.278 0.000e+00 5.899
15 male LandC reading NA 97.213 4.867e-180 3.398
16 <NA> <NA> reading NA 507.681 0.000e+00 4.314
17 <NA> <NA> reading NA 93.266 0.000e+00 2.268

First note the group.splits is set to c(0,2), which means that we re-
quest descriptives for the whole population and the 6 subpopulations. Con-
sequently, two analyses are conducted. The group.differences.by only ap-
plies for the second analysis, as the gender group is not considered relating
to the whole population analysis. To estimate sex differences across all coun-
tries, only sex has to be part of the group statement, and only sex has to
be used in the group.differences.by argument. The output of the analysis
is nearly the same as we would have omitted the group.differences.by ar-
gument, but now, some additional lines have joined. Additionally to several
group columns, one column for group membership is provided. The last line
labelled wholeGroup provides results concerning the whole population. The
line labelled male_LandC contains values for the males in LandC. Moreover,
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three mean differences were computed. In each federal state, the difference
between males and females is given.

At last for this chapter, let’s consider a further comparison: We see
group differences according to sex in each country. It is plausible to as-
sume that there are group differences also in the whole population. But: Is
there any country for which the group differences differ substantially from
the group differences in the whole population? To investigate this, we make
an exception from the rule that group.differences.by must contain values
which are included in groups: We add the term wholePop into the argument
group.differences.by:

> means <- jk2.mean(datL = read10, ID = "idstud", wgt = "wgt", type = "JK2",
+ PSU = "jkzone", repInd = "jkrep", imp = "imp", groups = c("sex","country"),
+ group.splits = 0:2, group.differences.by = "sex", cross.differences = TRUE,
+ dependent = "score")

4 analyse(s) overall according to: 'group.splits = 0 1 2'.

analysis.number hierarchy.level groups.divided.by group.differences.by
1 1 0 <NA>
2 2 1 sex sex
3 3 1 country <NA>
4 4 2 sex + country sex

Assume unnested structure with 3 imputations.
Create 62 replicate weights according to JK2 procedure.

> res06 <- report(jk2.out = means, add = list(domain = "reading"))

We see in the first line of the results object that the group differences
in the whole population are -27.39 points. Line number 2 includes the group
differences in LandA, which amounts -34.53. The difference between both, i.e.
−34.53 − (−27.39) = −7.14 is contained in line 3. Considering the corre-
sponding standard error of 8.7 yields that the difference is not significant:
The amount of the deviation (7.13) is less than twice the standard error of
the amount.

2.2 Frequency tables

Computation of frequency tables works in the same manner as in the exam-
ples mentioned before. Representative for several possible analyses only one
example is given below. Consider the score column we used as the dependent
variable in all previous analyses. Suppose we define a cut score criterion, i.e.
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all persons with at least 465 points passed, the other ones failed. The indi-
cator variable passReg defines whether the “regular standard” was fulfilled or
not. We now may be interested whether the percentage of pass/fails differs
between countries. We henceforward consider the column passReg as depen-
dent variable which is a simple indicator, i.e. a categorical variable with
two categories (computation of frequency tables for variables with more than
two categories are possible, too). Categorical variables are often represented
as factors in R, which is quite straightforward. However, the passReg vari-
able is of class numeric. This is an inconsistency which may cause annoying
misinterpretations when such variables are called in functions related to the
generalized linear model like aov(), glm() etc. For the computations of fre-
quency tables it is not necessary to convert the variable class to factor.

We now are interested in the relative frequencies of this groups in the
different countries and within each country for different groups of gender. As
before, we want to take the cluster structure and multiple imputations into
account. Moreover, we are interested whether the distribution of pass/fail is
different for males vs. females within specific countries. This is done via a
chi square test. The test statistic is pooled according to the clustered struc-
ture and the imputations. To call for the chi square test, we can use the
group.differences.by argument and additionally specify chiSquare = TRUE:

> freqs <- jk2.table( datL = read10, ID = "idstud", wgt = "wgt", type = "JK2",
+ PSU = "jkzone", repInd = "jkrep", imp = "imp", groups = c("country", "sex"),
+ group.differences.by = "sex", chiSquare = TRUE, dependent = "comp")

1 analyse(s) overall according to: 'group.splits = 2'.
Assume unnested structure with 3 imputations.
Create 62 replicate weights according to JK2 procedure.

> res07 <- report(jk2.out = freqs, add = list(domain = "reading"))
> print(res07, digits = 4)

group depVar modus comparison parameter country sex
1 LandA_female comp JK2.table <NA> 1 LandA female
2 LandA_female comp JK2.table <NA> 2 LandA female
3 LandA_female comp JK2.table <NA> 3 LandA female
4 LandA_female comp JK2.table <NA> 4 LandA female
5 LandA_female comp JK2.table <NA> 5 LandA female
6 LandA_male comp JK2.table <NA> 1 LandA male
7 LandA_male comp JK2.table <NA> 2 LandA male
8 LandA_male comp JK2.table <NA> 3 LandA male
9 LandA_male comp JK2.table <NA> 4 LandA male
10 LandA_male comp JK2.table <NA> 5 LandA male
11 LandB_female comp JK2.table <NA> 1 LandB female
12 LandB_female comp JK2.table <NA> 2 LandB female
13 LandB_female comp JK2.table <NA> 3 LandB female
14 LandB_female comp JK2.table <NA> 4 LandB female
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15 LandB_female comp JK2.table <NA> 5 LandB female
16 LandB_male comp JK2.table <NA> 1 LandB male
17 LandB_male comp JK2.table <NA> 2 LandB male
18 LandB_male comp JK2.table <NA> 3 LandB male
19 LandB_male comp JK2.table <NA> 4 LandB male
20 LandB_male comp JK2.table <NA> 5 LandB male
21 LandC_female comp JK2.table <NA> 1 LandC female
22 LandC_female comp JK2.table <NA> 2 LandC female
23 LandC_female comp JK2.table <NA> 3 LandC female
24 LandC_female comp JK2.table <NA> 4 LandC female
25 LandC_female comp JK2.table <NA> 5 LandC female
26 LandC_male comp JK2.table <NA> 1 LandC male
27 LandC_male comp JK2.table <NA> 2 LandC male
28 LandC_male comp JK2.table <NA> 3 LandC male
29 LandC_male comp JK2.table <NA> 4 LandC male
30 LandC_male comp JK2.table <NA> 5 LandC male
31 country=LandA comp JK2.table groupDiff chiSquareTest <NA> <NA>
32 country=LandB comp JK2.table groupDiff chiSquareTest <NA> <NA>
33 country=LandC comp JK2.table groupDiff chiSquareTest <NA> <NA>

domain D2statistic chi2Approx df1 df2 est p pApprox se
1 reading NA NA NA NA 0.08371 1.836e-05 NA 0.01954
2 reading NA NA NA NA 0.18556 1.351e-17 NA 0.02173
3 reading NA NA NA NA 0.31800 1.135e-38 NA 0.02445
4 reading NA NA NA NA 0.27691 5.565e-23 NA 0.02805
5 reading NA NA NA NA 0.13582 1.125e-11 NA 0.02000
6 reading NA NA NA NA 0.11287 9.861e-08 NA 0.02118
7 reading NA NA NA NA 0.21061 8.114e-16 NA 0.02616
8 reading NA NA NA NA 0.31579 2.516e-55 NA 0.02016
9 reading NA NA NA NA 0.25397 1.304e-23 NA 0.02536
10 reading NA NA NA NA 0.10675 1.377e-13 NA 0.01443
11 reading NA NA NA NA 0.19614 4.319e-11 NA 0.02975
12 reading NA NA NA NA 0.25409 9.950e-27 NA 0.02374
13 reading NA NA NA NA 0.26502 3.134e-15 NA 0.03361
14 reading NA NA NA NA 0.19948 2.806e-11 NA 0.02997
15 reading NA NA NA NA 0.08527 2.068e-07 NA 0.01642
16 reading NA NA NA NA 0.22956 8.146e-14 NA 0.03074
17 reading NA NA NA NA 0.25145 1.072e-17 NA 0.02935
18 reading NA NA NA NA 0.26594 1.902e-29 NA 0.02360
19 reading NA NA NA NA 0.18879 7.090e-17 NA 0.02262
20 reading NA NA NA NA 0.06427 8.691e-06 NA 0.01445
21 reading NA NA NA NA 0.12271 2.062e-09 NA 0.02048
22 reading NA NA NA NA 0.18009 8.243e-17 NA 0.02163
23 reading NA NA NA NA 0.28398 2.064e-29 NA 0.02522
24 reading NA NA NA NA 0.26840 1.805e-30 NA 0.02339
25 reading NA NA NA NA 0.14483 4.129e-19 NA 0.01621
26 reading NA NA NA NA 0.15140 1.121e-12 NA 0.02128
27 reading NA NA NA NA 0.20550 9.044e-12 NA 0.03013
28 reading NA NA NA NA 0.31705 3.239e-18 NA 0.03643
29 reading NA NA NA NA 0.23110 3.518e-17 NA 0.02742
30 reading NA NA NA NA 0.09495 2.517e-11 NA 0.01423
31 reading 1.217 NA 4 12.85 NA 3.512e-01 NA NA
32 reading 1.097 NA 4 41.57 NA 3.706e-01 NA NA
33 reading 2.267 NA 4 12.60 NA 1.195e-01 NA NA

The reporting function report summarizes the results.
The output is a single data frame in the long format. To make the output
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more pleasing to the eye, a short summary function dT is just waiting to do
her job, to summarize the results. The first column refers to the groups spec-
ified in the analysis (in our example: country and sex). The next column
gives the name of the dependent variable (i.e. “passReg”). The “modus” sim-
ply tells which analysis was conducted. If a specific kind of comparison was
computed, the “comparison” columns gives information whether group dif-
ferences, cross level differences or cross level differences of group differences
were computed. The “labels” of the dependent variable now are captured
in the parameter column. We see that in country "LandA" 73.1 percent of
the females and 67.7 percent of the males fulfills the regular standard. The
first three lines of the output indicate that in all countries the percentage of
females fulfilling the standards exceeds the percentage of males. The differ-
ences, however, is non significant in each country.

Unfortunately, the results of the chi square test are not yet captured by
the report function, so we have to extract them from the freqs object by
ourself:

> options(scipen=4)
> cols <- c("group", "coefficient", "value")
> frqs <- freqs[["resT"]][["noTrend"]]
> res <- frqs[which(frqs[,"parameter"] == "chiSquareTest"), cols ]
> wide <- reshape2::dcast(res, group~coefficient, value.var = "value")
> wide <- wide[,-grep("Approx", colnames(wide))]
> print(wide, digits = 1)

group D2statistic df1 df2 p
1 country=LandA 1 4 13 0.4
2 country=LandB 1 4 42 0.4
3 country=LandC 2 4 13 0.1

In each of the three countries a chi square test was conducted separately.
For LandA, the p is <.001, hence the distribution of passed/failed significantly
differs between males and females in LandA. However, LandB and LandC reveals
another picture—there are no sex differences in the rate of pass/fail. As we
have imputed data, we additionally have an chi square approximation. See
the help page of micombine.chisquare of the miceadds package for further
details.

There is a second alternative to analyze whether the distribution of pass/fail
is different for males vs. females within specific countries. With chiSquare

= FALSE we get the differences separately for each category of the dependent
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variable within each country. The conclusion we draw from this analysis,
however, is quite equivalent to the preceding analysis:

> freqs <- jk2.table( datL = read10, ID = "idstud", wgt = "wgt", type = "JK2",
+ PSU = "jkzone", repInd = "jkrep", imp = "imp", groups = c("country", "sex"),
+ group.differences.by = "sex", chiSquare = FALSE, dependent = "passReg")

1 analyse(s) overall according to: 'group.splits = 2'.
Assume unnested structure with 3 imputations.
Create 62 replicate weights according to JK2 procedure.

Let’s devote little attention to the problem of missing values. In the ex-
ample mentioned above, it does not seem plausible to assume missing values
on the "passed" variable. Without available data for an examinee, the case
will be excluded from the data previously. But consider a questionnaire where
pupils are asked about there parents’ profession, for example to compute the
family’s highest socio-economical income (HISEI). Some examinees might
have choosen the option “I don’t know my parents’ profession”. Conceptu-
ally, it makes considerably more sense to define a separate category during
the data preparation, for example “lowest HISEI”, “medium HISEI”, “highest
HISEI”, “unknown HISEI”. Families without valid HISEI information then
will be considered as a separate group in the analyses. Applying jk2.table

then will give frequencies for four groups. However, if the “Dont’t know”
cases appear as “NA” values, eatRep has to know whether it should handle
these values as missing or as a new distinct category named “Dont’t know”
(or whatever), for which relative frequencies also can be computed. Only for
illustration, let us generate some missing values in some of the imputations
and repeat the analysis subsequently. You will see that a new category has
joined to the output, which is labelled "<NA>".

> read10[,"passedNA"] <- read10[,"passReg"]
> read10[ sample(nrow(read10), 100, FALSE) ,"passedNA"] <- NA
> freqs2<- jk2.table( datL = read10, ID = "idstud", wgt = "wgt", type = "JK2",
+ PSU = "jkzone", repInd = "jkrep", imp = "imp", groups = c("country", "sex"),
+ dependent = "passedNA", separate.missing.indicator = TRUE)

1 analyse(s) overall according to: 'group.splits = 2'.
Assume unnested structure with 3 imputations.
Create 62 replicate weights according to JK2 procedure.

2.3 Quantiles

Estimation of quantiles for numerical variables is possible using the function
jk2.quantile. All related analyses mentioned up to this point apply in the
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same way. Note that these analyses apply for numerical dependent variables.
See the examples in the help file of jk2.quantile().

3 Generalized linear models

Considering multiple imputations and clustered structure in the estimation
of generalized linear models is based on the same principles as aforemen-
tioned. However, some additional comments due to specific characteristics
of regression models have to be made. First we now have another type of
variable—independent variables, which may occur as multiple imputed vari-
ables, too. Second, we have to specify the regression expression, as in glm(),
for example. Third, we will have to specify the kind of regression we propose
to estimate, for example linear or logistic regression. We start with a simple
example using the same data as before.

> mod1 <- jk2.glm(datL = read10, ID = "idstud", wgt = "wgt", type = "JK2",
+ PSU = "jkzone", repInd = "jkrep", imp = "imp", groups = "country",
+ formula = score~sex*ses, family=gaussian(link="identity"), poolMethod = "scalar")

1 analyse(s) overall according to: 'group.splits = 1'.
Assume unnested structure with 3 imputations.
Create 62 replicate weights according to JK2 procedure.

As we might have expected, the outcome is a single data frame in the
long format. And long really means long! For our purpose, it may be suffi-
cient to content ourself with the summary provided by dG. But beforehand
let us consider how many regression analyses are conducted and how many
results we expect to find. The message on the console speaks of about “1
analysis overall” according to group.splits = 1. But strictly speaking, we
have estimated three regression analyses, as the model is fitted in each group
(i.e., in each country) separately. As we have specified one grouping variable
dividing the data into three distinct groups (according to country) for which
we have instructed jk2.glm() to fit the regression model separately, we find
results of the three models in the results. More specifically, for each coun-
try, an intercept and three regression coefficients according to gender, INCOME
and their interaction are estimated. The dG() function allows us to have a
look only at a specific result out of the 3 analyses. analyses = 1:2 advises
the function to display the results of the first and second analysis. First we
should consider that each single analyses is characterized by two variables,

17



the group for which the model is fitted, and the dependent variable. In the
heading we find information about both. The actual regression results are
displayed underneath.

> res <- report(mod1, printGlm = TRUE)

Trend group: 'noTrend'.
groups: country = LandA

dependent Variable: score

parameter est se t.value p.value
1 (Intercept) 438.021 11.907 36.786 0.000
2 ses 1.444 0.187 7.709 0.000
3 sexmale -29.416 16.544 -1.778 0.076
4 sexmale:ses 0.269 0.248 1.085 0.278

R-squared: 0.134; SE(R-squared): 0.001
Nagelkerkes R-squared: NaN; SE(Nagelkerkes R-squared): NaN
1203 observations and 1199 degrees of freedom.
------------------------------------------------------------------

groups: country = LandB
dependent Variable: score

parameter est se t.value p.value
1 (Intercept) 367.323 13.060 28.126 0.000
2 ses 2.255 0.241 9.358 0.000
3 sexmale -4.027 16.196 -0.249 0.804
4 sexmale:ses -0.167 0.338 -0.495 0.621

R-squared: 0.222; SE(R-squared): 0
Nagelkerkes R-squared: NaN; SE(Nagelkerkes R-squared): NaN
1263 observations and 1259 degrees of freedom.
------------------------------------------------------------------

groups: country = LandC
dependent Variable: score

parameter est se t.value p.value
1 (Intercept) 413.788 13.914 29.738 0.000
2 ses 2.081 0.250 8.323 0.000
3 sexmale -12.438 16.359 -0.760 0.447
4 sexmale:ses -0.238 0.301 -0.791 0.429

R-squared: 0.169; SE(R-squared): 0
Nagelkerkes R-squared: NaN; SE(Nagelkerkes R-squared): NaN
1243 observations and 1239 degrees of freedom.

Remember what was said about factors in the chapter about frequency
tables: The gender variable now has to be defined explicitly to be of class
factor! Otherwise, albeit gender variable may be coded as 0/1, it would be
treated to be a continuous numeric variable. With only two levels—male and
female—this may have no effect on the results, but consider a factor variable
with three levels, which may be coded 0, 1 and 2. We are interested in two
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coefficients which correspond to the effect of level 1 vs. level 0 and the effect
of level 2 vs. level 0. If we refrain from defining the variable to be of class
factor, only one coefficient is computed, and the variable is assumed to be
continuous. What we see additionally is that R implicitly defined the female
group to be the reference—the regression parameter was labelled sexmale.

Now we try something different. First we define "passed" to be our de-
pendent variable. This leads to a binomial regression model which models
whether the probability of pass/fail depends on certain independent vari-
ables. Secondly, we also use country as a predictor (instead of a grouping
variable). This is to test whether the effect of sex varies across countries.
To simplify displaying the results, we use the same workaround as in the
example before.

> mod1 <- jk2.glm(datL = read10, ID = "idstud", wgt = "wgt", type = "JK2",
+ PSU = "jkzone", repInd = "jkrep", imp = "imp",
+ formula = passReg~country*sex, family=binomial(link="logit") )
1 analyse(s) overall according to: 'group.splits = 0'.
Assume unnested structure with 3 imputations.
Create 62 replicate weights according to JK2 procedure.
> res <- report(mod1, printGlm = TRUE)

Trend group: 'noTrend'.
groups:

dependent Variable: passReg

parameter est se t.value p.value
1 (Intercept) 1.000 0.170 5.891 0.000
2 countryLandB -0.800 0.256 -3.121 0.002
3 countryLandB:sexmale 0.138 0.267 0.517 0.605
4 countryLandC -0.165 0.199 -0.828 0.408
5 countryLandC:sexmale 0.016 0.223 0.073 0.941
6 sexmale -0.262 0.203 -1.287 0.198

R-squared: 0.026; SE(R-squared): NA
Nagelkerkes R-squared: 0.012; SE(Nagelkerkes R-squared): NA
3709 observations and 3703 degrees of freedom.

Inspecting the output, we found that the probability of success signifi-
cantly depends on the country an examinee stems from and on an examinee’s
sex. The probability of passing the test is significantly lower for males and
for examinees who stem from "LandB". Examinees who stem from "LandC" do
not significanty differ in their probability of passing the test from examinees
who stem from the reference country, "LandA". Moreover, the disadvantage
of boys is not consistent across countries: In "LandB", this difference is sig-
nificantly less substantial.
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Please note that—although we have only defined one independent variable—
we obtain two regression coefficients for the two categories of the country
variable. Again, R choosed its favorite reference group by itself. The effects
are expressed in relation to LandA. To interpretate the effects, the coefficients
may be transformed to odds ratios:

> #exp(mod1[c(1,3,5,7,9),"value"])

In LandB the odds ratio to pass is 0.58 times the corresponding odds ratio
in LandA. The following subsections address two little questions one might
ask oneself.

3.1 How to change reference group at costumer’s op-
tion

As we saw in the preceding section, R choosed the reference group of factor
variables by itself. Persuading R to meet our needs is easier said than done.
The essentially easiest way is to redefine the factor variable and choose its
levels manually. We will demonstrate this procedure about the gender vari-
able in our fictitious data set. Remember the first example in section 3—R
choosed the females to be the reference. Why? Simply because “female”
comes before “male” in the alphabet. Let’s redefine the gender variable:

> read10[,"sexRecoded"] <- factor(read10[,"sex"], levels = c("male", "female") )

The simple intervention provokes R to use the first label mentioned in the
levels-argument as reference group when repeating the last example:

> mod1 <- jk2.glm(datL = read10, ID = "idstud", wgt = "wgt", type = "JK2",
+ PSU = "jkzone", repInd = "jkrep", imp = "imp",
+ formula = passReg~country*sexRecoded, family=binomial(link="logit") )

1 analyse(s) overall according to: 'group.splits = 0'.
Assume unnested structure with 3 imputations.
Create 62 replicate weights according to JK2 procedure.

> res <- report(mod1, printGlm = TRUE)

Trend group: 'noTrend'.
groups:

dependent Variable: passReg

parameter est se t.value p.value
1 (Intercept) 0.738 0.126 5.865 0.000
2 countryLandB -0.662 0.168 -3.935 0.000
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3 countryLandB:sexRecodedfemale -0.138 0.267 -0.517 0.605
4 countryLandC -0.149 0.177 -0.838 0.402
5 countryLandC:sexRecodedfemale -0.016 0.223 -0.073 0.941
6 sexRecodedfemale 0.262 0.203 1.287 0.198

R-squared: 0.026; SE(R-squared): NA
Nagelkerkes R-squared: 0.012; SE(Nagelkerkes R-squared): NA
3709 observations and 3703 degrees of freedom.

3.2 Which of both determination coefficients should I
pay attention?

The output of each jk2.glm() analysis also contains the pooled determi-
nation coefficient, R2 and Nagelkerke’s R2, which may be considered as a
pseudo-R2 for log-linear regression models. In linear regression models, i.e.
if the identity link is used and normally distributed errors are assumed, the
conventional R2 should be used to interpret explained variance. In log-linear
regression models, i.e. if the binomial link function is used, Nagelkerke’s R2

may be used instead.

4 Nested imputations

The next to last chapter of this little tutorial is reserved to the problem of
nested imputation. The general concept is described in Rubin (2003). At
this point, only some specific aspects which are relevant in large scale assess-
ments, are mentioned briefly. Suppose you want to estimate IRT proficiencies
(often denoted θ) in a specific domain. Applying an extensive marginal model
which comprehends of item responses and background information as well,
the posterior distribution of each examinees’ θ is specified. Without any cer-
tain proficiency value of a specific examinee—remember that θ is considered
to be latent, i.e. an inherently missing variable—, plausible values are drawn
from the posterior of each examinee. Conceptually, plausible values are mul-
tiple imputations of the missing variable θ and may analyzed in standard
statistic procedures. To obtain valid estimates and standard errors, the re-
sults have to be pooled according to Rubin (1987).

Suppose you have missing data in the background variables as well, which
have to be imputed in the first step, which may result in M = 5 data sets. For
each data set a marginal IRT model is specified and N = 20 plausible values
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are drawn. Overall 5 × 20 = 100 plausible values in a dependency structure
will result from the analysis. Formally, we now have nested imputed data.
To pool the results, the formulas in Rubin (1987) cannot be applied, as the
plausible values do not stem from a common ‘nest’. The interdependence
has to be taken into account. Whereas the conventional pooling formulas
split the overall variance in the variance within imputation and the variance
between imputation (where the latter one is used to estimate the uncertainty
due to imputation), the formulas for nested imputation extend the old ones
by splitting the variance between imputation in the within-nest variance and
the variance between nests. See Rubin (2003) for further details. These var-
ied formulas are also implemented in eatRep.

If the data analysed with eatRep stem from a nested multiple imputation
structure, this structure has to be specified. More specifically, the structure
has to be represented in the long-format data frame. eatRep has to know
the number of nests and the number of imputations in each nest. The above
procedure sounds more complicated than it hopefully is.

4.1 Example: Compute descriptives from a nested im-
putation structure

At the beginning of this little tutorial, we have created a subset of our data
set which was used for all analyses so far. Now it’s time to consider the whole
data set. The variable "nest" denotes the nest or first-stage imputation vari-
able. As we only have two nests, only two imputations were created in the
first step. Within each of this two imputations, three plausible values were
drawn from the marginal (or conditioning) model. Hence, we would expect
that the plausible values (captured in column "score") vary between nests
and between imputations, whereas the conditioning variables (e.g. income)
only vary between nests, but not between imputations within each nest! To
date, the eatRep does not provide any consistency checks whether this re-
quirements are fulfilled.

All analyses specified so far treated 3 imputations. Considering the nested
structure now comprises 3 × 2 = 6 imputations. For the purpose of illutra-
tion, we repeat our very first example, using nested imputations now:
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> read <- subset(lsa, domain == "reading")
> readN1.10 <- subset(read, year == 2010 )
> means <- jk2.mean(datL = readN1.10, ID = "idstud", wgt = "wgt", type = "JK2",
+ PSU = "jkzone", repInd = "jkrep", nest="nest", imp = "imp",
+ groups = "country", dependent = "score")

1 analyse(s) overall according to: 'group.splits = 1'.
Assume nested structure with 2 nests and 3 imputations in each nest. This will result in 2 x 3 = 6 imputation replicates.
Create 62 replicate weights according to JK2 procedure.

> res <- report(means)

The only thing we have to change is that we use now the whole data and
additionally specify the variable which denotes the “nests”.

4.2 Example: Fit a linear regression model in a nested
imputation structure

The principles of considering the nested structure are quite the same as in
the preceding example. We now want to predict “reading ability” by sex

and income. Using country as group variable likewise allows for investigating
whether the potential effects vary across countries.

> mod1 <- jk2.glm(datL = readN1.10, ID = "idstud", wgt = "wgt", type = "JK2",
+ PSU = "jkzone", repInd = "jkrep", nest="nest", imp = "imp",
+ groups = "country", formula = score~sex+ses, family=gaussian(link="identity") )

Method 'mice' is not available for nested imputation. Switch to method 'scalar'.
1 analyse(s) overall according to: 'group.splits = 1'.
Assume nested structure with 2 nests and 3 imputations in each nest. This will result in 2 x 3 = 6 imputation replicates.
Create 62 replicate weights according to JK2 procedure.

> res <- report(mod1)
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