Primitive array operations in the gRbase package

Søren Højsgaard

January 30, 2013

Contents

1 Introduction 1
1.1 Arrays in R 1
1.2 Terminology 2
2 cell2entry() and entry2cell() 2
3 nextCell() and nextCellSlice() 3
4 slice2entry() 3
5 permuteCellEntries() 4
6 factGrid() - Factorial grid 4

1 Introduction

This note describes some operations on arrays in R. These operations have been implemented to facilitate implementation of graphical models and Bayesian networks in R.

1.1 Arrays in R

The documentation of R states the following about arrays:

An array in R can have one, two or more dimensions. It is simply a vector which is stored with additional attributes giving the dimensions (attribute "dim") and optionally names for those dimensions (attribute "dimnames").
A two-dimensional array is the same thing as a matrix.
One-dimensional arrays often look like vectors, but may be handled differently by some functions.

Hence the defining characterstic of an array is that it is a vector with a dim attribute. For example

```
R> ## 1-dimensional array
R> ##
R> x1 <- 1:8
R> dim(x1) <- 8
R> x1
[1] 1 2 3 4 5 6 7 8
R> c(is.array(x1), is.matrix(x1))
```

```
[1] TRUE FALSE
```

```
R> ## 2-dimensional array (matrix)
R> ##
R> x2 <- 1:8
R> dim(x2) <- c(2,4)
R> x2
\begin{tabular}{lrrrr} 
& {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} & {\([, 4]\)} \\
{\([1]\),} & 1 & 3 & 5 & 7 \\
{\([2]\),} & 2 & 4 & 6 & 8
\end{tabular}
R> c(is.array(x2), is.matrix(x2))
[1] TRUE TRUE
```

R> \#\# 3-dimensional array
R> \#\#
$R>x 3<-\operatorname{array}(1: 8, \operatorname{dim}=c(2,2,2))$
$R>x 3$
, , 1

	$[, 1]$	$[, 2]$
$[1]$,	1	3
$[2]$,	2	4

, , 2

	$[, 1]$	$[, 2]$
$[1]$,	5	7
$[2]$,	6	8

R> c(is.array(x3), is.matrix(x3))
[1] TRUE FALSE

1.2 Terminology

Consider a set $\Delta=\left\{\delta_{1}, \ldots, \delta_{K}\right\}$ of $|\Delta|=K$ factors where the factor δ_{k} has levels $I_{k}=\left\{1, \ldots, L_{k}\right\}$. The cross product $I=I_{1} \times \ldots \times I_{K}$ defines an array where $i=\left(i_{1}, \ldots, i_{K}\right) \in I$ is a cell. It is the convention here that the first factor varies fastest. To each cell $i \in I$ there is often a value $f(i)$.
As shown above, an array is implemented as a vector x of length $L=|I|$, that is $x \equiv(f(i), i \in I)$. In practice x is indexed by an entry e as $x[e]$ for $e=1, \ldots, L$.
The factor levels $\left(I_{1}, \ldots, I_{K}\right)$ are denoted adim in the code below. As an example we take the following:

```
R> adim2222 <- c(2,2,2,2)
R> adim2323 <- c(2,3,2,3)
```


2 cell2entry() and entry2cell()

The map from a cell to the corresponding entry is provided by cell2entry(). The reverse operation, going from an entry to a cell (which is much less needed) is provided by entry2cell().
$R>\operatorname{cell2entry}(c(1,1,1,1), \operatorname{adim} 2222)$
[1] 1

```
R> entry2cell(1, adim2222)
```

[1] $\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$
$R>$ cell2entry $(c(2,1,2,1)$, adim2222)
[1] 6
$R>$ entry2cell(6, adim2222)
[1] 2121

3 nextCell() and nextCellSlice()

Given a cell, say $i=(1,1,2,1)$ we often want to find the next cell in the table following the convention that the first factor varies fastest, that is ($2,1,2,1$). This is provided by nextCell ().
$R>$ nextCell (c ($1,1,2,1$), adim2222)
[1] 2121
$R>$ nextCell ($c(2,2,2,1)$, adim2222)
[1] $\begin{array}{lllll}1 & 1 & 1 & 2\end{array}$
Given $A \subset \Delta$ and a cell $i_{A} \in I_{A}$ consider the cells $I\left(i_{A}\right)=\left\{j \in I \mid j_{A}=i_{A}\right\}$. For example, the cells satisfying that factor 2 is at level 1 . Given such a cell, say $(2,1,1,2)$ we often want to find the next cell also satisfying this constraint following the convention that the first factor varies fastest, that is $(1,1,2,2)$. This is provided by nextCellSlice().
$R>$ nextCellSlice(c(2,1,1,2), sliceset=c(2), adim2323)
[1] 1122
$R>$ nextCellSlice(c(1,3,2,1), sliceset=c(2,3), adim2323)
[1] 2321

4 slice2entry()

Given $A \subset \Delta$ and a cell $i_{A} \in I_{A}$. This cell defines a slice of the original array, namely the cells $I\left(i_{A}\right)=\left\{j \in I \mid j_{A}=i_{A}\right\}$. We often want to find the entries in x for the cells $I\left(i_{A}\right)$. This is provided by slice2entry (). For example, we may want the entries for the cells $(*, 1,2, *)$ or $(2,2, *, *)$:

[1] $5 \quad 6 \quad 1314$

To verify that we indeed get the right cells:
$R>$ do.call(rbind, lapply(r1, entry2cell, adim2222))

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	1	1	2	1
$[2]$,	2	1	2	1
$[3]$,	1	1	2	2
$[4]$,	2	1	2	2

5 permuteCellEntries()

In a 2×3 table, entries $1, \ldots, 6$ correspond to combinations $(1,1),(2,1),(1,2),(2,2),(1,3),(2,3)$. If we permute the table to a 3×2 table the entries become as follows:
$R>$ ($p<-$ permuteCellEntries $($ perm $=c(2,1), \operatorname{adim}=c(2,3))$)
[1] 135246

So for example,
$R>(A<-\operatorname{array}(11: 16, \operatorname{dim}=c(2,3)))$

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	11	13	15
$[2]$,	12	14	16

$R>A p<-A[p]$
$R>\operatorname{dim}(A p)<-c(3,2)$
$R>A p$

	$[, 1]$	$[, 2]$
$[1]$,	11	12
$[2]$,	13	14
$[3]$,	15	16

This corresponds to
$R>\operatorname{aperm}(A, c(2,1))$

	$[, 1]$	$[, 2]$
$[1]$,	11	12
$[2]$,	13	14
$[3]$,	15	16

6 factGrid() - Factorial grid

Using the operations above we can obtain the combinations of the factors as a matrix:

	[,1]	[,2]	[,3]	[, 4]
[1,]	1	1	1	1
[2,]	2	1	1	1
[3,]	1	2	1	1
[4,]	2	2	1	1
[5,]	1	1	2	1
[6,]	2	1	2	1
R> tail (ff)				
	$[, 1]$	[,2]	$[, 3]$	[,4]
[11,]	1	2	1	2
[12,]	2	2	1	2
[13,]	1	1	2	2
[14,]	2	1	2	2
[15,]	1	2	2	2
[16,]	2	2	2	2

This is the same as (but faster)

```
R> aa <- expand.grid(list(1:2,1:2,1:2,1:2))
R> head(aa)
\begin{tabular}{lrrrr} 
& & & \\
& Var1 & Var2 & Var3 & Var4 \\
1 & 1 & 1 & 1 & 1 \\
2 & 2 & 1 & 1 & 1 \\
3 & 1 & 2 & 1 & 1 \\
4 & 2 & 2 & 1 & 1 \\
5 & 1 & 1 & 2 & 1 \\
6 & 2 & 1 & 2 & 1
\end{tabular}
```

There is a slice version as well:
R> factGrid(adim2222, slicecell=c(1,2), sliceset=c (2,3))

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	1	1	2	1
$[2]$,	2	1	2	1
$[3]$,	1	1	2	2
$[4]$,	2	1	2	2

