Package ‘h.likelihood’
September 20, 2010

Type Package
Title Statistical Modeling and Inference via Hierarchical Likelihood
Version 2010.9.20
Date 2010-09-20
Author Xia Shen, Marek Molas and Il Do Ha
Maintainer Xia Shen <xia.shen@lcb.uu.se>

Description
The package provides a top interface of hierarchical likelihood (h-likelihood) based models. It currently covers the estimation of hierarchical generalized linear models (HGLMs) and frailty models.

LazyLoad yes
Depends hglm, HGLMMM, lattice, Matrix, numDeriv

R topics documented:

- h.likelihood-package
- cgd
- Frailty.h
- HGLM
- kidney

Index

h.likelihood-package

Statistical Modeling and Inference via Hierarchical Likelihood

Description
The package provides a top interface of hierarchical likelihood (h-likelihood) based models. It currently covers the estimation of hierarchical generalized linear models (HGLMs) and frailty models.

Details
Author(s)

Xia Shen, Marek Molas and Il Do Ha
Maintainer: Xia Shen <xia.shen@lcb.uu.se>

References

See Also

hglm-package, HGLMMM-package
Description

The CGD data set in Fleming and Harrington (1991) consists of a placebo-controlled randomized trial of gamma interferon in chronic granulomatous disease.

Usage

data(cgd)

Format

A data frame with 203 observations on the following 16 variables.

- OBS There were 203 observations.
- HOSPITAL Hospital ID: There were 13 hospitals where trials were conducted.
- PATIENT Patient ID: There were 128 patients.
- TIME The recurrent infection times of each patient from the different hospitals.
- DEL Censoring indicator (1 = uncensored, 0 = censored).
- TRT Treatment Code (1 = gamma interferon, 0 = placebo).
- INHERIT Pattern of inheritance (0 = autosomal recessive, 1 = X-linked).
- AGE Age of each patient, years.
- HEIGHT Height of each patient, in cm.
- WEIGHT Weight of each patient, in kg.
- STEROIDS Using corticosteroids at times of study entry (1 = Yes, 0 = No).
- PROPYLAC Using prophylactic antibiotics at time of study entry (1 = Yes, 0 = No).
- SEX Sex of each patient (0 = male, 1 = female).
- H Hospital region (0 = U.S.A., 1 = Europe).
- LONGI A longitudinal variable representing the accumulated time from the first infection (in years).
- ENUM Sequence number. For each patient, the infection records are in sequence number.

References

Examples

data(cgd)
Frailty.h
Fitting Frailty Models using H-likelihood Approach

Description

Frailty.h is used to fit frailty models using h-likelihood approach. The package fits Cox’s proportional hazards models with random effects (or frailties). Here, for the frailty distribution lognormal or gamma is allowed. The h-likelihood obviates the need for marginalization over the frailty distribution, leading to a statistically efficient procedure for various random-effect models including frailty models.

Usage

```r
Frailty.h(formulaMain, censor, DataMain, RandDist = "Normal", mord = 0, 
dord = 1, Maxiter = 200, convergence = 1e-7, contrasts = NULL)
```

Arguments

- **formulaMain**: Specify the formula for the mean structure of the model. e.g. `y ~ x + (1|id)`, `y`: response, `x`: fixed covariate, `id`: random effect.
- **censor**: One vector for censoring indicator (1 = uncensored, 0 = censored).
- **DataMain**: Dataframe for formulaMain.
- **RandDist**: Distribution for random effect ("Normal" or "Gamma").
- **mord**: Order for the mean model (0 or 1); default = 0.
- **dord**: Order for the dispersion components (1 or 2); default = 1.
- **Maxiter**: Maximum number of iterations; default = 1.
- **convergence**: Specify the convergence criterion, the default is 1e-7.
- **contrasts**: Caution as it is currently not fully developed.

Details

Frailty.h produces estimates of fixed effects and frailty parameters as well as their standard errors. Also, Frailty.h makes it possible to fit models where the frailty distribution is not necessarily normal and estimate variance components when frailty structure is shared or nested.

Author(s)

Il Do Ha

References

Examples

Not run:
data(cgd)
data(kidney)

Frailty model

Analysis of Kidney data

kln11 <- Frailty.h(time ~ sex + age + (1|patient)-1, kidney$censor, kidney,
 RandDist = "Normal", mord = 1, dord = 1)
kln12 <- Frailty.h(time ~ sex + age + (1|patient) - 1, kidney$censor, kidney,
 RandDist = "Normal", mord = 1, dord = 2)
kg11 <- Frailty.h(time ~ sex + age + (1|patient) - 1, kidney$censor, kidney,
 RandDist = "Gamma", mord = 1, dord = 1)
kg12 <- Frailty.h(time ~ sex + age + (1|patient) - 1, kidney$censor, kidney,
 RandDist = "Gamma", mord = 1, dord = 2)

Analysis of CGD data

cgd11 <- Frailty.h(TIME ~ TRT + (1|HOSPITAL) + (1|PATIENT) - 1, cgd$DEL, cgd,
 RandDist = "Normal", mord = 1, dord = 1)
cgd12 <- Frailty.h(TIME ~ TRT + (1|HOSPITAL) + (1|PATIENT) - 1, cgd$DEL, cgd,
 RandDist = "Normal", mord = 1, dord = 2)

End(Not run)

HGLM

Fitting Hierarchical Generalized Linear Models

Description

This function fits hierarchical generalized linear models (HGLMs) using various approximation methods.

Usage

HGLM(y = NULL, X = NULL, Z = NULL, X.disp = NULL,
 family = gaussian(link = identity),
 random.family = gaussian(link = identity), method = "EQL",
 conv = 1e-04, maxit = 20, fixed = NULL, random = NULL,
 disp = NULL, link.disp = "log", disp.random = NULL,
 data = NULL, data.random = NULL, fix.disp = NULL,
 Offset = NULL, Weights = NULL, disp.start = 0, binomial.N = NULL,
 start.fixed = NULL, start.random = NULL, start.disp = NULL,
 start.disp.random = NULL, info = TRUE, debug = FALSE,
 contrasts = NULL)

Arguments

- **y**: the dependent variable, only available when method = ‘EQL’.
- **X**: a design matrix for the fixed effects, only available when method = ‘EQL’.
- **Z**: an design matrix for the random effects, only available when method = ‘EQL’.
X.disp

A design matrix for the fixed effects in the dispersion part of the model, only available when method = ‘EQL’.

family

A description of the error distribution and link function to be used in the mean part of the model. (See family for details of family functions.)

random.family

A description of the error distribution and link function to be used in the variance part of the model.

method

Estimation method, which can be ‘EQL’, ‘HL01’, or ‘HL11’, where ‘EQL’ can only be used when only one random effect term is specified. ‘EQL’ is the method of interconnected GLMs presented in Lee et al. (2006), and for ‘HL01’ and ‘HL11’, see Lee and Nelder (2001).

conv

Convergence criterion, the default is 1e-4, for models with many random effects could be set less strict.

maxit

Maximum number of iterations in the IWLS algorithm, only available when method = ‘EQL’.

fixed

A formula specifying the fixed effects part of the model, and the format is Response ~ Fixed.Effect.1 + ... + Fixed.Effect.p.

random

A one-sided formula specifying the random effects part of the model, and the format is ~ (Random.Effect.1 | Subject.1) + ... + (Random.Effect.q | Subject.q).

disp

A one-sided formula specifying the fixed effects in the dispersion part of the model, and the format is ~ Effect.1 + ... + Effect.N.

link.disp

The link function for the dispersion part of the model, only available when method = ‘EQL’.

disp.random

A list of one-sided formulas for the dispersion structure of each random effects, which has the format of list(one = ~ Effect.1.1 + ..., two = ~ Effect.2.1 + ..., three = ..., ...), only available when method = ‘HL01’ or ‘HL11’.

data

The data frame to be used together with fixed and random.

data.random

A list of data.frames for disp.random, which has the format of list(one = data.Random.1, two = data.Random.2, ...), only available when method = ‘HL01’ or ‘HL11’.

Weights

Prior weights to be specified in weighted regression, only available when method = ‘EQL’.

fix.disp

A numeric value if the dispersion parameter of the mean model is known for example 1 for binomial and Poisson models.

Offset

An offset for the linear predictor of the mean model.

disp.start

(Starting) values for the overdispersion structure - vector of length equal to the number of parameters in the overdispersion structure, only available when fix.disp = NULL and method = ‘HL01’ or ‘HL11’.

binomial.N

The number of trials for each observation for binomial models.

start.fixed

Optional starting values for fixed effects in the mean structure (one vector of numeric values).

start.random

Optional starting values for random effects in the mean structure (one vector of numeric values).

start.disp

Optional starting values for parameters of dispersion components of the residuals (one vector of numeric values).
start.disp.random

optional starting values for parameters of dispersion components of random effects (one vector of numeric values).

info

a request to display of iteration information if TRUE, only available when method = ‘HL01’ or ‘HL11’.

debug

a request to display of iteration mechanism progress in detail if TRUE, only available when method = ‘HL01’ or ‘HL11’.

contrasts

see `lm`, caution as it is currently not fully developed, only available when method = ‘HL01’ or ‘HL11’.

Details

When method = ‘EQL’, all the model checking functions in the hglm-package are available on the object returned; Otherwise, all the model checking functions in the HGLMMM-package are available on the object returned.

Value

When method = ‘EQL’, an object of class `hglm` is returned, see `hglm`; Otherwise, an object of class `HGLM` is returned, see `HGLMfit`.

Note

The function provides a unified interface to the hglm-package developed by Moudud Alam, Lars Ronnegard and Xia Shen, and the HGLMMM-package developed by Marek Molas.

Author(s)

Xia Shen and Marek Molas

References

See Also

hglm-package, HGLMMM-package, hglm, HGLMfit.
Examples

data(semiconductor)

----- use 'EQL'

h.gamma.normal <- HGLM(fixed = y ~ x1 + x3 + x5 + x6,
random = ~ 1|Device,
family = Gamma(link = log),
disp = ~ x2 + x3, data = semiconductor)

summary(h.gamma.normal)

plot(h.gamma.normal, cex = .6, pch = 1,
cex.axis = 1/.6, cex.lab = 1/.6,
cex.main = 1/.6, mar = c(3, 4.5, 0, 1.5))

----- use 'HL(0,1)'

RSC <- data.frame(int = rep(1, 16))

h.gamma.normal <- HGLM(fixed = y ~ x1 + x3 + x5 + x6,
random = ~ 1|Device,
family = Gamma(link = log),
disp = ~ x2 + x3, data = semiconductor,
method = 'HL01', disp.start = c(0, 0, 0),
disp.random = list(one = ~ 1), data.random = list(RSC))

----- use 'HL(1,1)'

RSC <- data.frame(int = rep(1, 16))

h.gamma.normal <- HGLM(fixed = y ~ x1 + x3 + x5 + x6,
random = ~ 1|Device,
family = Gamma(link = log),
disp = ~ x2 + x3, data = semiconductor,
method = 'HL11', disp.start = c(0, 0, 0),
disp.random = list(one = ~ 1), data.random = list(RSC))

kidney

Kidney Infection Data

Description

The data presented by McGilchrist and Aisbett (1991) consist of times to the first and second recurrences of infection in 38 kidney patients using a portable dialysis machine.

Usage

data(kidney)

Format

A data frame with 76 observations on the following 9 variables.

time Survival time: Time to infection since insertion of the catheter
censor Censoring indicator(1 = uncensored, 0 = censored).
obs There were 76 observations.
patient Patient ID: There were 38 patients with two recurrences.
age Age of each patient.
sex Sex of each patient(1 = male, 2 = female).
dy0 GN type of disease(1 = Yes, 0 = No).
dy1 AN type of disease(1 = Yes, 0 = No).
dy2 PKD type of disease(1 = Yes, 0 = No).

References

Examples
`data(kidney)`
Index

*Topic HGLM
Frailty.h, 3
HGLM, 5

*Topic h-likelihood
Frailty.h, 3
HGLM, 5

cgd, 2

data.frame, 6

family, 5
formula, 6
Frailty.h, 3

h.likelihood
 (h.likelihood-package), 1
h.likelihood-package, 1
HGLM, 5, 7
hglm, 7
hglm-package, 2, 6, 7
HGLMfit, 7
HGLMMP-package, 2, 6, 7

kidney, 8

lm, 6