
Information share and component share weights:

R implementation

Nidhi Aggarwal
Indira Gandhi Institute of Development Research, Mumbai

Abstract

This paper explains the implementation of function pdshare in the package ifrogs.
The function can be employed to estimate the two most widely used approaches to mea-
sure price discovery: information share and component share. The implementation is
illustrated with an example to determine the share of spot and futures market for a stock
in price discovery. The function can currently be used for a bivariate case only.

Keywords: Price discovery, information share, component share.

1. Introduction

Price discovery is a process by which new information is timely and efficiently incorporated
into market prices of the assets. When the same asset (or an asset with similar attributes)
is traded in multiple markets, the question that arises is: which market incorporates the new
information first, or, which market leads the price discovery process? In order to answer this
question, two techniques that have been developed and most widely used in the literature
are: Information Share (IS), proposed by Hasbrouck (1995) and Component Share (CS)
proposed by Booth, So, and Tse (1999), Chu, Hsieh, and Tse (1999), Harris, McInish, and
Wood (2002) which is based on the permanent and transitory decomposition of Gonzalo
and Granger (1995). The two approaches are based on a common implicit efficient price
that is contained in the observed price of a security and can be estimated using a vector
error correction model (VECM) framework. Hasbrouck’s IS focuses on the variance of the
efficient price innovation, and measures what proportion of the efficient price variance can
be attributed to the innovations from different markets. The CS approach, on the other
hand, focuses on the composition of the efficient price innovation and measures a market’s
contribution to price discovery as its contribution to the efficient price innovation.

At present, there is no standard package in R that implements the two approaches. The
function pdshare() in the package ifrogs attempts to provide a tool for the same. It has
been used for the estimations of the IS and CS weights in Aggarwal and Thomas (2011).1

Currently, the function can be used for a bivariate case only. However, the future version of
the package is aimed at extending the function to more than two markets.

The article proceeds as follows: Section 2 briefly describes the derivation of the two measures.
Section 3 explains the function and the implementation method. Section 4 illustrates the

1An example dataset used to illustrate the function replicates the results of Table 10 in the paper.

2 Price discovery measures in R

function with an example. Section 5 and 6 show the accuracy and computational efficiency
of the function. Section 7 summarises.

2. Model specification

Let pi,t = (p1,t, p2,t)
′ denote a vector of (log) prices of a security traded on two distinct

markets, 1 and 2, such that

pi,t = (p1,t, p2,t) ∼ I(1)

Since the prices represent the same security, the two prices are linked by the force of arbitrage
and cannot deviate from each other in the long run. The two price series are thus cointegrated
and the linear relationship is expressed as

p1,t = βp2,t + µt

where µt ∼ I(0) and β is the cointegrating vector, β = (1,−β)′. The VECM representation
for ‘k’ lags can be given as

∆pt = αβ′pt−1 + Γ1∆pt−1 + ...Γk∆pt−k + εt (1)

where α represents the coefficient associated with the error correction term. ε is a 2×1 vector
of the residuals with εt ∼ N(0,Ω). Since the price changes are assumed to be covariance
stationary, the vector moving average (VMA) or the Wold representation is given as:

4pt = Ψ(L)εt

where Ψ(L) = Σ∞s=0ΨsL
s

The Beveridge-Nelson decomposition (Beveridge and Nelson 1981) can be used to derive the
common trends representation in the levels prices:

pt = p0 + Ψ(1)Σt
s=0εs + Ψ∗(L)εt

where, Ψ(1) = Σ∞k=0Ψk. In the above equation, the matrix Ψ(1) contains the cumulative
impact of innovation εt on all future price movements and thus measures the long run impact
of εt on prices. Hasbrouck (1995) shows that since both the price series represent an identical
security, the long run impact of εt on each of the price series should be the same. Thus, in
principle, the rows of Ψ(1) are identical.

2.1. Information share

Denote ψ = (ψ1, ψ2) as the common row vector of Ψ(1). ψεt is the incremental change
in price that is permanently impounded into the security prices and is presumably due to
new information (captured in εt). Hasbrouck (1995) proposes the use of the structure of the

Nidhi Aggarwal 3

variance of this component to derive the measure of price discovery. The variance of ψεt is
written as:

var(ψεt) = ψΩψ′

If Ω is diagonal, then ψΩψ′ will consist of ‘n’ terms, each of which would represent contribution
to the efficient price innovation from each market. The proportion of the variance of the
efficient price innovation that can be attributed from an innovation from market ‘j’, is called
‘j’th market’s information share. It is defined as

ISj =
ψ2
jΩjj

ψΩψ′

where ψj is the j th element of ψ.

However, if Ω is not diagonal, that is, if the price innovations are correlated, the proposed
measure has the problem of attributing the covariance terms to each market. To overcome this
problem, Hasbrouck (1995) suggested the use of triangularization/Cholesky decomposition of
Ω and measure IS using the orthogonalized innovations. This can be accomplished in the
following way:

Let ‘F’ be a lower triangular matrix such that FF ′ = Ω. The IS for the jth market is then
defined as

ISj =
([ψ′F]i)

2

ΨΩΨ′

The resulting IS will depend on the ordering of price variables. The upper bound of IS of
a particular market can be obtained by placing that market’s price first. Similarly, a lower
bound can be obtained by placing that market’s price the last. For ‘n’ markets, by doing all
the permutations, one can obtain the obtain the upper and lower bound of IS for each market.

2.2. Component share

Under this approach, pt takes the form:

pt = A1ft +A2zt

where f=γ
′pt ∼ I(1) is the permanent component and zt ∼ I(0) is the transitory component.

While A1 and A2 are the loading matrices, γ′ is the matrix of common factor weights. Gonzalo-
Granger defined γ = (α′⊥β⊥)−1α′⊥ such that α′⊥α = 0 and β′⊥β = 0. Note that α and β
correspond to the VECM representation mentioned before. Booth et al. (1999), Chu et al.
(1999), Harris et al. (2002), Baillie, Booth, Tse, and Zabotina (2002) suggested measuring
price discovery in market ‘j’ using the component share as:

CSj =
α⊥,j

α⊥,j + β⊥,j
, j = 1, 2

4 Price discovery measures in R

3. R implementation

The two approaches described in the previous section can be implemented using the function
pdshare. The function consumes a matrix of (log) prices and returns a list of IS and CS
measures, the covariance matrix of residuals and the number of lags used for estimation. The
function is described below:

> library(ifrogs)

> str(pdshare)

function (x, override.lags = NULL, lag.max = 10)

The data matrix of prices for which the measure is to be estimated is provided in the argument
x. A user can specify the lag order to be used in VECM estimation by using the argument
override.lags. Alternatively, the user can also use the Akaike information criterion (AIC)
in order to automatically determine the number of lags. This can be achieved by specifying
the highest lag order that one would want to use in the argument lag.max. Once an integer
in lag.max is specified, the function pdshare uses the VARselect function in package vars to
select the number of lags.

The function pdshare first estimates a VEC model for the underlying data in x using the
functionality in package urca. The orthogonalized coefficient matrices are then derived using
function Psi in package vars. Subsequently, the Ψ(1) matrix is computed as β⊥(α⊥′Γβ⊥)−1α⊥
where Γ = (I − Γ1 − . . . − Γk−1). Once these estimations are done, IS and CS weights are
computed as specified in Section 2.

As we discussed in Section 2, the IS estimates depend on the ordering of the price variables.
IS is first estimated as per the supplied ordering. Once the estimation on supplied ordering
is done, the results are stored and then the ordering of the price variables is automatically
reversed. That is, Price series 1 will be column 2 and Price series 2 will be column 1 in the
data matrix. IS estimation is then done for the reversed ordering.

The function pdshare returns a list of five elements. These are: is.original.ordering,
is.reversed.ordering, component.share, var.covar.matrix and lags.used. is.original.ordering
returns the IS estimates for the supplied ordering, is.reversed.ordering returns the IS
estimates for the reversed ordering. Note that the first and second element of the vector
is.original.ordering specify the IS estimate of Market 1 and 2 respectively. In contrast,
the first and the second element of the vector is.reversed.ordering specify the IS estimate
of Market 2 and 1 respectively. var.covar.matrix returns the variance-covariance matrix of
the VECM residuals. One can obtain the number of lags used in the VECM estimation using
lags.used.

4. Example

This section illustrates the function with a data set on the spot and the futures market for a
stock RELIANCE, traded on the National Stock Exchange, India. In the first step, the package
ifrogs and dataset idfc are loaded.

> library(ifrogs)

Nidhi Aggarwal 5

> data(is_reliance)

> head(is_reliance)

datetime spot futures

1 2009-05-06 06:25:07 1873.9 1877.85

2 2009-05-06 06:25:08 1873.9 1879.00

3 2009-05-06 06:25:09 1865.0 1879.00

4 2009-05-06 06:25:10 1865.0 1877.50

5 2009-05-06 06:25:11 1867.5 1876.50

6 2009-05-06 06:25:12 1867.5 1876.50

Since the prices are of the same security traded on two different markets – spot and the
futures, the two price series are cointegrated. We now proceed to estimate the IS and CS
weights for the two markets using the function pdshare.

> compute.time <- system.time(ans <- pdshare(log(is_reliance[,-1]), lag.max=120))

> summary(is_reliance)

datetime spot futures

Min. :2009-05-06 06:25:07 Min. :1862 Min. :1868

1st Qu.:2009-05-06 07:48:50 1st Qu.:1883 1st Qu.:1885

Median :2009-05-06 09:12:33 Median :1896 Median :1898

Mean :2009-05-06 09:12:33 Mean :1900 Mean :1903

3rd Qu.:2009-05-06 10:36:16 3rd Qu.:1914 3rd Qu.:1918

Max. :2009-05-06 12:00:00 Max. :1938 Max. :1944

We use the automatic lag selection based on the AIC criterion, and specify an upper bound
for the maximum number of lags to be used for VECM estimation as 5. ans.pds shows the
list of objects returned from the function.

> ans$is.original.ordering

IS

spot 0.07401349

futures 0.92598651

> ans$is.reversed.ordering

IS

futures 0.9842687

spot 0.0157313

> ans$component.share

CS

spot 0.1092093

futures 0.8907907

6 Price discovery measures in R

> ans$var.covar.matrix

spot futures

spot 2.973507e-08 4.173273e-09

futures 4.173273e-09 2.630731e-08

> ans$lags.used

[1] 52

ans$is.original.ordering indicates that the spot market (Market 1) has an IS of 7% while
that of the futures market (Market 2) is 93%. On reversing the ordering, the IS of spot and
the futures market is estimated as 2% and 98% respectively. The average IS of the futures
market is thus, 96%. The estimates indicate that the futures market leads the price discovery
process. The component share weights also show that the futures market has a share of 89%
while the spot market has a share of 11% in price discovery. These values replicate the results
in Table 10 from the paper Aggarwal and Thomas (2011). The number of lags used in the
VECM estimation is fifty-two

Alternatively, the user can fix the number of lags using override.lags. This can be done as
follows:

> compute.time.1 <- system.time(ans1 <-

+ pdshare(log(is_reliance[,-1]), override.lags=60))

> ans1

$is.original.ordering

IS

spot 0.06864645

futures 0.93135355

$is.reversed.ordering

IS

futures 0.986837

spot 0.013163

$component.share

CS

spot 0.1006936

futures 0.8993064

$var.covar.matrix

spot futures

spot 2.964055e-08 4.174971e-09

futures 4.174971e-09 2.629263e-08

$lags.used

[1] 60

Nidhi Aggarwal 7

ans1 shows the results of the estimation by imposing the number of lags to be used in the
model as sixty.

5. Benchmarking accuracy

The accuracy of the code has been tested using the analytical examples presented in Baillie
et al. (2002). The authors use an error correction model and derive the IS and CS measures for
three different examples of the error correlation behavior. The paper uses the following model:

For two cointegrated series x1 and x2

∆x1 = −α1(x1,t−1 − x2,t−1) + ε1t

∆x2 = α2(x1,t−1 − x2,t−1) + ε2t

cov(e1t, e2t) =

(
1 ρ
ρ 1

)
where α1 and α2 are positive constants and eit ∼ N(0, 1).

For different values of α1, α2 and ρ, the authors report the IS and CS values in Table 1 of the
paper.

We simulate the above model for different values of α1, α2 and ρ (as per the paper) and report
the true and estimated values of IS and CS measures in Table 1.2 As in Baillie et al. (2002),
we report the values of these measures for x1 only.

As we see from the table, there is negligible difference between the estimated values returned
using the function pdshare and the true values.

6. Computational efficiency

This section discusses the performance of the function in terms of computational time taken
to estimate the two measures. All computations are done on a 64bit Linux machine with
R-2.15.3. compute.time and compute.time.1 in Section 4 record the time taken to compute
IS and CS for a day using one second data for RELIANCE. The results are as follows:

> compute.time

user system elapsed

87.725 5.728 93.504

> compute.time.1 # on using override.lags=4

user system elapsed

4.813 0.260 5.072

250 simulations for each model type were conducted. The table reports the mean value of estimated IS and
CS.

8 Price discovery measures in R

Table 1 True and estimated IS and CS values

The table shows the true and estimated values of IS and CS for series x1 obtained for the model used in the

anaytical example in Baillie et al. (2002). UB indicates the upper bound while LB indicates the lower bound

of the IS measure.

True values Estimated values

Example IS-UB IS-LB CS ÎS-UB ÎS-LB ĈS

A: α1 = α2 = 0.05

ρ = 0 0.50 0.50 0.50 0.50 0.50 0.50
ρ = 0.1 0.55 0.45 0.50 0.55 0.45 0.50
ρ = 0.5 0.75 0.25 0.50 0.75 0.25 0.50
ρ = 0.9 0.95 0.05 0.50 0.95 0.05 0.51

B: α1 = 0.0, α2 = 0.05

ρ = 0 1.00 1.00 1.00 1.00 1.00 0.98
ρ = 0.1 1.00 0.99 1.00 1.00 0.99 0.98
ρ = 0.5 1.00 0.75 1.00 1.00 0.75 0.98
ρ = 0.9 1.00 0.19 1.00 1.00 0.19 0.96

C: α1 = 0.025, α2 = 0.05

ρ = 0 0.80 0.80 0.67 0.80 0.80 0.67
ρ = 0.1 0.82 0.73 0.67 0.82 0.74 0.67
ρ = 0.5 0.89 0.43 0.67 0.89 0.43 0.67
ρ = 0.9 0.98 0.09 0.67 0.98 0.09 0.68

A large chunk of the computational time is taken in the automated selection of the number of
lags using VARselect. The function pdshare uses a modified VARselect (called MVARselect).
MVARselect replaces lm to lm.fit in the function VARselect.3 This improves the perfor-
mance of the code by 2x. In addition, specification of the number of lags in override.lags

can substantially reduce the amount of time taken by the function in generating the output.

7. Summary

This document explains the functionality of pdshare in R to estimate the two most common
techniques to measure price discovery: information share and component share. The function
makes extensive use of the functions in urca and vars packages.

Currently the function is implemented for a bivariate case only. However, the future version
of the function will be extended to multiple markets case.

8. Acknowledgements

I would like to thank Ajay Shah and Susan Thomas for helpful comments and suggestions.

3We replace resids <- resid(lm(yendog ~-1 + ys.lagged)) to resids <- lm.fit(x=ys.lagged,

y=yendog)$residuals in the original function VARselect.

Nidhi Aggarwal 9

References

Aggarwal N, Thomas S (2011). “When do stock futures dominate price discovery?” Tech-
nical report, IGIDR WP-2011-016. URL http://www.igidr.ac.in/pdf/publication/

WP-2011-016.pdf.

Baillie R, Booth G, Tse Y, Zabotina T (2002). “Price discovery and common factor models.”
Journal of Financial Markets, 5(3), 309–321.

Beveridge S, Nelson C (1981). “A new approach to the decomposition of economic timeseries
into permanent and transitory components with particular attention to the measurement
of the ‘businesscycle’.” Journal of Monetary Economics, 7, 151–174.

Booth G, So R, Tse Y (1999). “Price discovery in the German equity index derivatives.”
Journal of Futures Markets, 19(6), 619–643.

Chu QC, Hsieh WG, Tse Y (1999). “Price discovery on the S&P 500 index markets: An anal-
ysis of spot index, index futures and SPDRs.” International Review of Financial Analysis,
8(1), 21–34.

Gonzalo J, Granger C (1995). “Estimation of common long-memory components in cointe-
grated systems.” Journal of Business and Economic Statistics, 13(1), 27–35.

Harris F, McInish TH, Wood R (2002). “Security price adjustments across exchanges: An
investigation of common factor components for Dow stocks.” Journal of Financial Markets,
5(3), 277–308.

Hasbrouck J (1995). “One security, many markets: Determining the contributions to price
discovery.” Journal of Finance, 50(4), 1175–1199.

Yan B, Zivot E (2010). “A structural analysis of price discovery measures.” Journal of
Financial Markets, 13(1), 1–19.

Affiliation:

Nidhi Aggarwal
Indira Gandhi Institute of Development Research
Goregaon East, Mumbai
400 065, India
E-mail: nidhi@igidr.ac.in

http://www.igidr.ac.in/pdf/publication/WP-2011-016.pdf
http://www.igidr.ac.in/pdf/publication/WP-2011-016.pdf
mailto:nidhi@igidr.ac.in

	Introduction
	Model specification
	Information share
	Component share

	R implementation
	Example
	Benchmarking accuracy
	Computational efficiency
	Summary
	Acknowledgements

