R/errorest.R

Defines functions errorestinclass errorest.data.frame errorest.default errorest control.errorest

Documented in control.errorest errorest errorest.data.frame errorest.default

# $Id: errorest.R,v 1.25 2005/06/29 08:50:28 hothorn Exp $

control.errorest <- function(k= 10, nboot = 25, strat=FALSE,
                     random=TRUE, predictions=FALSE, getmodels=FALSE, list.tindx = NULL) {
  if (k < 1) { 
    warning("k < 1, using k=10")
    k <- 10
  }
  if (nboot < 1) {
    warning("nboot < 1, using nboot=25")
    nboot <- 25
  }
  if (!is.logical(strat)) {
    warning("strat is not a logical, using strat=FALSE")
    strat <- FALSE
  }
  if (!is.logical(random)) {
    warning("random is not a logical, using random=TRUE")
    random <- TRUE
  }
  if (!is.logical(predictions)) {
    warning("predictions is not a logical, using predictions=FALSE")
    predictions <- FALSE
  }

  if (!is.logical(getmodels)) {
    warning("getmodel is not a logical, using getmodels=FALSE")
    getmodels <- FALSE
  }

  RET <- list(k=k, nboot=nboot, strat=strat, random=random, 
              predictions=predictions, getmodels=getmodels, list.tindx = list.tindx)
  return(RET)
}

errorest <- function(formula, data, ...) UseMethod("errorest", data)

errorest.default <- function(formula, data, ...)
  stop(paste("Do not know how to handle objects of class", class(data)))

errorest.data.frame <- function(formula, data, subset, na.action=na.omit,
                     model=NULL, predict=NULL, 
                     estimator = c("cv", "boot", "632plus"),
                     est.para = control.errorest(), ...) {

  cl <- match.call()
  m <- match.call(expand.dots = FALSE)
  if (length(grep("inclass", paste(m$model))) > 0 || 
      length(grep("inbagg", paste(m$model))) > 0) {
    RET <- errorestinclass(formula, data=data, subset, na.action,
           model, predict, estimator, est.para, ...)
    RET$call <- cl
  } else { 

    if(missing(formula)
      || (length(formula) != 3)
      || (length(attr(terms(formula[-3], data = data), "term.labels")) != 1))
    stop("formula missing or incorrect")
    NOPRED <- (length(attr(terms(formula[-2], data = data), "term.labels")) < 1) 
    if(is.matrix(eval(m$data, parent.frame())))
    m$data <- as.data.frame(data)
    m[[1]] <- as.name("model.frame")
    m$... <- NULL
    m$model <- NULL
    m$predict <- NULL
    m$estimator <- NULL
    m$est.para <- NULL

    mf <- eval(m, parent.frame())

    response <- attr(attr(mf, "terms"), "response")
    # just extract the data.frame, NA handling here
    # make sure to leave the time and censoring variable here
    # for "Surv(time, cens) ~ ." formulas
    # delete terms attribute 
    attr(mf, "terms") <- NULL
    y <- mf[,response]
    if (!NOPRED & !is.Surv(y))
      data <- mf
    else
      data <- data[complete.cases(data),]

    if(all(estimator %in% c("boot", "632plus")) & all(c("boot", "632plus") %in% estimator)) {
      estimator <- paste(sort(estimator), collapse = "_")
    } else {
      if(length(estimator) > 1)  {
        estimator <- estimator[1]
#        warning(paste("Multiple choice of estimators, only", estimator, "is performed"))
      } else {
        estimator <- match.arg(estimator)
      } 
    }
    
    if(is.null(model)) 
      stop("no model specified")

    switch(estimator,
           "cv" = {
             RET <- cv(y, formula, data, model=model, predict=predict, 
                       k=est.para$k, random=est.para$random,
                       predictions=est.para$predictions, strat=est.para$strat,
                       getmodels=est.para$getmodels, list.tindx = est.para$list.tindx, ...)
           }, "boot" = {
             RET <- bootest(y, formula, data, model=model, predict=predict,
                            nboot=est.para$nboot, list.tindx = est.para$list.tindx, predictions = est.para$predictions, ...)
           }, "632plus" = {
             RET <- bootest(y, formula, data, model=model, predict=predict,
                            nboot=est.para$nboot, bc632plus=TRUE, list.tindx = est.para$list.tindx, predictions = est.para$predictions, ...)
           }, "632plus_boot" = {
             RET <- bootest(y, formula, data, model=model, predict=predict,
                            nboot=est.para$nboot, bc632plus = TRUE, list.tindx = est.para$list.tindx, predictions = est.para$predictions, both.boot = TRUE, ...)
           }
           )
  }
  RET$call <- cl
  return(RET)
}

errorestinclass <- function(formula, data, subset=NULL, na.action=NULL, 
                     model=NULL, predict=NULL,
                     estimator = c("cv", "boot", "632plus"),
                     est.para = control.errorest(), ...) {
  if (is.null(data)) stop("data argument required but not given")
#  if (is.null(iclass)) 
#    stop("no class membership variable for indirect classification given")
  iclass <- paste(formula[[2]][[2]])
  if (!(iclass %in% colnames(data))) 
    stop("membership variable not in given data")

  # <FIXME> 
#  data <- data[complete.cases(data),]
  # </FIXME>

  iclassindx <- which(colnames(data) == iclass)

  y <- data[,iclassindx]
  if (!is.factor(y)) stop("iclass is not a factor")
#  X <- data[,-iclassindx]
  X <- data

  if(is.null(model))
      stop("no classifier specified")

  switch(estimator, "cv" = {
    RET <- cv(y, formula, data=X, model=model, predict=predict,
              k=est.para$k, random=est.para$random, list.tindx = est.para$list.tindx, ...)
    }, "boot" = {
      RET <- bootest(y, formula, data=X, model=model, predict=predict,
                     nboot=est.para$nboot, list.tindx = est.para$list.tindx, ...)
    }, "632plus" = {
      RET <- bootest(y, formula, data=X, model=model, predict=predict,
                     nboot=est.para$nboot, bc632plus=TRUE, list.tindx = est.para$list.tindx, ...)
  })
  RET
}

Try the ipred package in your browser

Any scripts or data that you put into this service are public.

ipred documentation built on Aug. 14, 2018, 3 p.m.