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1. Introduction
TODO: Some comments and references to applications might be useful here.

An important problem in statistical modeling is that of subset selection regression or, equiv-
alently, of finding the best regression equation (Hastie et al. 2001). Given a set of possible
variables to be included in the regression, the problem consists in selecting a subset that op-
timizes some statistical criterion. The latter originates in the estimation of the corresponding
submodel (Miller 2002). Consider the standard regression model

y = Xβ + ε, (1)

where y ∈ RM is the output variable, X ∈ RM×N is the regressor matrix of full column rank,
β ∈ RN is the coefficient vector, and ε ∈ RM is the noise vector. The ordinary least squares
(OLS) estimator of β is the solution of

β̂OLS = argmin
β

RSS(β), (2)

where the residual sum of squares (RSS) of β is given by

RSS(β) = ‖y −Xβ‖22. (3)

That is, β̂OLS minimizes the norm of the residual vector. The computation of the RSS does
not require to explicitly determine β; the former can be done by means of orthogonal matrix
decomposition methods and is numerically stable (Golub and Van Loan 1996).
Let V = {1, . . . , N} denote the set of all possible variables. A subset model (or submodel) is
denoted by S, S ⊆ V . Given a criterion function f , the best-subset selection problem consists
in solving

S∗ = argmin
S⊆V

f(S). (4)
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Here, the value f(S) = F (n, ρ) is seen as a function of n = |S| and ρ = RSS(S), the number
of selected variables and the RSS of the OLS estimator of S, respectively. Furthermore, it is
assumed that f(S) is monotonic with respect to RSS(S) for fixed n, that is

RSS(S1) ≤ RSS(S2)⇒ f(S1) ≤ f(S2), |S1| = |S2|. (5)

Common selection criteria exhibit this property, such as those belonging to the AIC family
defined by the formula

AICk = M +M log 2π +M log(RSS/M) + k(n+ 1), (6)

where the scalar k represents a penalty per parameter (k > 0). The usual AIC and BIC are
obtained for k = 2 and k = logM , respectively (Miller 2002). It follows that (4) is equivalent
to

S∗ = S∗ν , where ν = argmin
n

f(S∗n)

and
S∗n = argmin

|S|=n
RSS(S) for n = 1, . . . , N . (7)

Finding the solution to (7) is called the all-subsets selection problem. Thus, solving (4) can
be seen as an indirect, two-stage procedure:

Stage 1 For each subset size n, find the subset S∗n (|S∗n| = n) with the smallest RSS.

Stage 2 Compute f(S∗n) for all n, and determine ν such that f(S∗ν) is minimal.

Note that the computational strategy may be optimized for a specific selection criterion when
solving the best-subset selection problem (4) directly, thus lowering the compuational cost.
On the other hand, by explicitly solving the all-subsets regression problem (7) once and for
all (Stage 1), the list of all N submodels is made readily available for further exploration:
the evaluation of multiple criterion functions (e.g., AIC and BIC), or conducting a more
elaborate statistical inference, can be done at a negligible cost (Stage 2). Thus, it can be
advisable to adopt a two-stage approach in the case of a broader and more thorough statistical
investigation.
Brute-force (or exhaustive) search procedures that enumerate all possible subsets become
intractable even for a modest number of variables. Exact algorithms must employ techniques
to reduce the size of the search space – i.e., the number of enumerated subsets – in order
to tackle larger problems. Heuristic algorithms renounce optimality in order to decrease
execution times: they are designed for solving a problem more quickly, but make no guarantees
on the quality of the solution produced; genetic algorithms and simulated annealing count
among the well-known heuristic algorithms. Approximation algorithms, on the other hand,
return a solution that provably lies within well specified bounds of the optimum.
Several packages that deal with variable subset selection are available on the R platform.
The package leaps (Lumley and Miller 2009) implements exact, non-exhaustive algorithms
for subset regression based on Miller (2002). Exhaustive algorithms have been considered
within the context of generalized linear models (package bestglm, McLeod and Xu 2014).
The package subselect proposes simulated annealing algorithms based on the work of Duarte
Silva (2001). Furthermore, genetic algorithms for generalized linear models and beyond have
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been implemented by Calcagno and de Mazancourt (2010, package glmulti) andWolters (2015,
package kofnGA). Non-exact algorithms for regularized estimation of parametric models with
automatic variable selection performed by lasso or elastic net estimation for generalized linear
models have been investigated by Friedman et al. (2010).
Here, the lmSubsets package (Hofmann et al. 2016) for exact variable-subset regression is
presented. It offers methods for solving both the best-subset (4) and the all-subsets (7)
selection problems. It implements the algorithms presented by Gatu and Kontoghiorghes
(2006) and Hofmann et al. (2007). A branch-and-bound strategy is employed to reduce
the size of the search space. The package further proposes approximation methods that
compute non-exact solutions very quickly while giving guarantees on the quality of the result.
The core of the package is written in C++. The package is available for the R system for
statistical computing (R Core Team 2016) from The Comprehensive R Archive Network at
https://CRAN.R-project.org/package=lmSubsets.
Section 2 reviews the theoretical background and the underlying algorithms. The package’s
R interface is presented in Section 3. A usage example is given in Section 4, while benchmark
results are illustrated in Section 6.
TODO: No discussion section?

2. Computational strategies
The linear regression model (1) has 2N possible subset models which can be efficiently orga-
nized in a regression tree. A dropping column algorithm (DCA) was devised as a straight-
forward approach to solve the all-subsets selection problem (7). The DCA evaluates all
possible variable subsets by traversing a regression tree consisting of 2N−1 nodes (Gatu and
Kontoghiorghes 2003; Smith and Bremner 1989).
Each node (S, k) of the tree corresponds to a subset S = {s1, . . . , sn} of n variables and an
index k (k = 0, . . . , n − 1). The root node (V, 0) corresponds to the full set of variables.
For every visited node (S, k), the RSS of the n − k subleading models corresponding to the
subsets {s1, . . . , sk+1}, . . . , {s1, . . . , sn} are reported. Child nodes are generated by dropping
(deleting) a variable:

drop(S, j) = (S \ {sj}, j − 1), j = k + 1, . . . , n− 1.
Numerically, this is equivalent to downdating an orthogonal matrix decomposition after a
column has been deleted (Golub and Van Loan 1996; Kontoghiorghes 2000; Smith and Brem-
ner 1989). Givens rotations are employed to efficiently move from one node to another. The
DCA maintains a subset table r with N entries; entry rn contains the RSS and the variable
subset of the current-best submodel of size n (Gatu and Kontoghiorghes 2006; Hofmann et al.
2007). Figure 1 illustrates a regression tree for N = 5 variables. The index k is symbolized
by a bullet (•). The subleading models are listed in each node.
The DCA is computationally demanding, with a theoretical time complexity of O(2N ). A
branch-and-bound algorithm (BBA) has been devised to reduce the number of generated
nodes by cutting subtrees which do not contribute to the current-best solution. It relies on
the fundamental property that the RSS increases when variables are deleted from a regression
model, that is:

S1 ⊆ S2 ⇒ RSS(S1) ≥ RSS(S2).

https://CRAN.R-project.org/package=lmSubsets
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Figure 1: All-subsets regression tree (with subleading models) for N = 5 variables.

A cutting test is employed to determine which parts of the DCA tree are redundant: A new
node drop(S, j) is generated only if RSS(S) < rj (j = k+ 1, . . . , n− 1). The quantity RSS(S)
is called the bound of the subtree rooted in (S, k): no subset model extracted from the subtree
can have a smaller RSS (Gatu and Kontoghiorghes 2006). Note that the BBA is an exact
algorithm, i.e., it computes the optimal solution of the all-subsets regression problem (7).
To further reduce the computational cost, the all-subsets regression problem can be restricted
to a range of submodel sizes (Hofmann et al. 2007). In this case, the problem (7) is reformu-
lated as

S∗n = argmin
|S|=n

RSS(S) for n = nmin, . . . , nmax, (8)

where nmin and nmax are the subrange limits (1 ≤ nmin ≤ nmax ≤ N). The search will
span only a part of the DCA regression tree. Specifically, nodes (S, k) are not computed if
|S| < nmin or k ≥ nmax.
The size of subtrees rooted in the same level decreases exponentially from left to right. In
order to encourage the pruning of large subtrees by the BBA cutting test, the variables in a
given node can be ordered such that a child node will always have a larger RSS (i.e., bound)
than its right siblings (Gatu and Kontoghiorghes 2006). This strategy can be applied in
nodes of arbitrary depth. However, computing the variable bounds incurs a computational
overhead. Thus, it is not advisable to indiscriminately preorder variables. A parameter – the
preordering radius p – has been introduced to control the degree of preordering (Hofmann
et al. 2007). It accepts a value between p = 0 (no preordering) and p = N (preordering in all
nodes); when p = 1, preordering is performed in the root node only. Typically, p = bN/3c
produces good results.
The computational efficiency of the BBA is improved by allowing the algorithm to prune
non-redundant portions of the regression tree. The so-called heuristic branch-and-bound
algorithm (HBBA) relaxes the cutting test by employing a set of tolerance parameters τn ≥ 0
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(n = 1, . . . , N), one for every submodel size. A node drop(S, j) is generated only if there
exists at least one i such that

(1 + τi) · RSS(S) < ri, i = j, . . . , n− 1. (9)

The algorithm is non-exact if τn > 0 for any n, meaning that the computed solution is not
guaranteed to be optimal. The algorithm cuts subtrees the more aggressively the greater
the value of τn, thus increasing the computational efficiency. The advantage of the HBBA
over heuristic algorithms is that the relative error of the solution is bounded by the tolerance
parameter (Gatu and Kontoghiorghes 2006; Hofmann et al. 2007), thus giving the user control
over the tradeoff between solution quality and speed of execution. Note that “heuristic BBA”
is a misnomer, as the algorithm does not belong to the class of heuristic algorithms at all;
rather, it is an approximation algorithm.
The DCA and its derivatives report the N subset models with the lowest RSS, one for each
subset size. The user can then analyze the list of returned subsets to determine the “best”
subset, for example by evaluating some criterion function. This approach is practical but not
necessarily the most efficient. The f -BBA specializes the cutting test of the standard BBA
for a particular criterion function f(S) = F (n, ρ), where n = |S| and ρ = RSS(S), under
the condition that it satisfies the monotonicity property (5). Specifically, a node drop(S, j) is
generated if and only if

F (j,RSS(S)) < rf ,

where rf is the single current-best solution. This results in a more “informed” cutting test,
and in a smaller number of generated nodes.

3. Implementation in R
The R package lmSubsets provides a simple framework for variable subset selection in linear
regression. Two S3 classes are defined, namely “lmSubsets” and “lmSelect”, that address all-
subsets (7) and best-subset (4) selection, respectively. The package offers R’s standard formula
interface: linear models can be specified by means of a symbolic formula, and possibly a data
frame. The model specification is resolved into a regressor matrix and a response vector,
which are forwarded to low-level workhorse functions for actual processing, together with
optional arguments that serve to further specify the selection problem. Routines to extract
the best subsets from an all-subsets regression solution (i.e., to convert an “lmSubsets” to
an “lmSelect” object) are also provided. An overview of the package structure is given in
Table 1.

3.1. Specifying the selection problem

The default methods are closely modeled after R’s standard lm function: they can be called
with any entity that can be coerced to a formula object (Chambers and Hastie 1992). The
formula object declares the dependent and independent variables, which are typically taken
from a data.frame specified by the user. For example, the call

lmSubsets(mortality ~ precipitation + temperature1 + temperature7 +
age + household + education + housing + population + noncauc +
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S3 class Methods and functions Description
“lmSubsets” lmSubsets() All-subsets selection (generic function)

lmSubsets.default() Standard formula interface
lmSubsets_fit() Workhorse function

“lmSelect” lmSelect() Best-subset selection (generic function)
lmSelect.default() Standard formula interface
lmSelect.lmSubsets() Conversion method
lmSelect_fit() Workhorse function
lmSubsets_select() Explicit conversion function

Table 1: Package structure.

whitecollar + income + hydrocarbon + nox + so2 + humidity,
data = AirPollution)

specifies a response variable (mortality) and fifteen predictor variables, all taken from the
AirPollution dataset (Miller 2002). It is common to shorten the call by emloying R’s
practical “dot-notation”:

lmSubsets(mortality ~ ., data = AirPollution),

where the dot (.) stands for “all variables not mentioned in the left-hand side of the formula”.
By default, an intercept term is included in the model; that is, the call in the previous example
is equivalent to

lmSubsets(mortality ~ . + 1, data = AirPollution).

To discard the intercept, the call may be rewritten as follows:

lmSubsets(mortality ~ . - 1, data = AirPollution).

Submodels can be rejected based on the presence or absence of certain independent variables.
The parameter include specifies that all submodels must contain one or several variables. In
the following example, only submodels containing the variable noncauc are retained:

lmSubsets(mortality ~ ., include = "noncauc", data = AirPollution).

Conversely, the exclude parameter can be employed to discard a specific set of variables, as
in the following example:

lmSubsets(mortality ~ ., exclude = "whitecollar", data = AirPollution).

The same effect can be achieved by rewriting the formula as follows:

lmSubsets(mortality ~ . - whitecollar, data = AirPollution).
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The include and exclude parameters may be used in combination, and both may specify
more than one variable (e.g., include = c("noncauc", "whitecollar")).
The criterion used for best-subset selection is evaluated following the expression

−2 · logLik + penalty · npar,

where penalty is the penalty per model parameter defined in (6), logLik the log-likelihood
of the fitted model, and npar the number of model parameters (including the error variance).
The penalty value indicates how strongly model parameters are penalized, with large values
favoring parsimonious models. When penalty = 2, the criterion corresponds to Akaike’s
information criterion (AIC, Akaike 1974); when penalty = log(nobs), to Schwarz’s Bayesian
information criterion (BIC, Schwarz 1978), where nobs is the number of observations. For
example, either one of

lmSelect(mortality ~ ., data = AirPollution, penalty = 2)

and

lmSelect(mortality ~ ., data = AirPollution, penalty = "AIC")

will select the best submodel according to the usual AIC; by default, lmSelect() employs
the BIC.

3.2. Core functions

The high-level interface methods process the model specification before dispatching the call to
one of two low-level core functions, passing along a regressor matrix x and a response vector
y, together with problem-specific arguments. The core functions act as wrappers around the
C++ library, and are declared as

lmSubsets_fit(x, y, weights = NULL, offset = NULL, include = NULL,
exclude = NULL, nmin = NULL, nmax = NULL, tolerance = 0, pradius = NULL,
nbest = 1, ..., .algo = "phbba")

and

lmSelect_fit(x, y, weights = NULL, offset = NULL, include = NULL,
exclude = NULL, penalty = "BIC", tolerance = 0, pradius = NULL,
nbest = 1, ..., .algo = "phbba").

The parameters are summarized in Table 2.
The weights and offset parameters correspond to the homonymous parameters of the lm
function. The include and exclude parameters allow the user to specify variables that are
to be included in, or excluded from all candidate models. They are either logical vectors –
with each entry corresponding to one variable – or are automatically expanded if given in the
form of an integer vector (i.e., set of variable indices) or character vector (i.e., set of variable
names).
For a large number of variables (see Section 6), execution times may become intractable. In
order to speed up the execution, either the search space can be reduced, or one may settle
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Parameter Description Canonical representation
x Data matrix numeric[nobs,nvar]
y Response variable numeric[nobs]
weights Model weights numeric[nobs]
offset Model offset numeric[nvar]
include Regressors to force in logical[nvar]
exclude Regressors to force out logical[nvar]
nmin Min. number of regressors integer[1] for lmSubsets() only
nmax Max. number of regressors integer[1] for lmSubsets() only
tolerance BBA tolerance parameters numeric[nvar] for lmSubsets()

numeric[1] for lmSelect()
pradius Preordering radius integer[1]
nbest Number of best subsets integer[1]
.algo Algorithm to execute character[1]

Table 2: Core parameters.

for a non-exact solution. In the first approach, the user may specify values for the nmin and
nmax parameters as defined in (8), in which case submodels with less than nmin or more than
nmax variables are discarded. Well-defined regions of the regression tree can be ignored by
the selection algorithm, and the search space is thus reduced.
In the second approach, expectations with respect to the solution quality are lowered, i.e.,
non-optimal solutions are tolerated. This is indicated by passing a numeric value – typically
between 0 and 1 – to the tolerance parameter, which will be used by the HBBA cutting
test (9) to prune the search tree more aggressively. The solution produced by the HBBA
satisfies the following relationship:

f(S) ≤ (1 + tolerance) · f(S∗),

where S is the returned solution, S∗ the optimal (theoretical) solution, and f the value of a
submodel (e.g., deviance, AIC). The lmSubsets_fit() function accepts a vector of tolerances,
with one entry for each subset size.
The nbest parameter controls how many submodels (per subset size) are retained. In the case
of lmSubsets_fit(), a two-dimensional result set is constructed with nbest submodels for
each subset size, while in the case of lmSelect_fit(), a one-dimensional sequence of nbest
submodels is handed back to the user.
The pradius parameter serves to specify the desired preordering radius. The algorithm
employs a default value of bnvar/3c. The need to set this parameter directly should rarely
arise; please refer to Section 2 for further information. The .algo parameter serves to specify
the computational algorithm to be employed. This parameter is used for testing purposes
only and should never be set by the user.

3.3. Extracting submodels

The user is handed back a result object that encapsulates the solution to an all-subsets
(class “lmSubsets”) or best-subset (class “lmSelect”) selection problem. An object of class
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Component Description Canonical representation
nobs Number of observations integer[1]
nvar Number of regressors integer[1]
weights Weights used numeric[nobs]
offset Offset used numeric[nobs]
intercept Intercept flag logical[1]
include Regressors forced in logical[nvar]
exclude Regressors forced out logical[nvar]
penalty Penalty used numeric[nvar] for “lmSelect” only
tolerance Tolerances used numeric[nvar]
nbest Number of best subsets integer[1]
df Degrees of freedom integer[nbest,nvar] for “lmSubsets”

integer[nbest] for “lmSelect”
rss Residual sum of squares numeric[nbest,nvar] for “lmSubsets”

numeric[nbest] for “lmSelect”
which Selected regressors logical[nvar,nbest,nvar] for “lmSubsets”

logical[nvar,nbest] for “lmSelect”

Table 3: Components of “lmSubsets” and “lmSelect” objects.

“lmSubsets” represents a two-dimensional nbest× nvar set of submodels; an object of class
“lmSelect”, a linear sequence of nbest submodels. Problem-specific information is stored
alongside the selected submodels. Table 3 summarizes the components of the result objects.
A wide range of standard methods to visualize, summarize, and extract information are
provided (see Table 4). The print(), plot(), and summary() methods give the user a
compact overview – either textual or graphical – of the information gathered on the selected
submodels in order to help him identify “good” candidates. The remaining extractor functions
behave in the usual way, and can be used to extract variable names, coefficients, covariance
matrices, fitted values, etc.
In order to designate a submodel, “lmSubsets” methods provide the parameters size and
best to specify the number of regressors in and the ranking of the desired submodel, re-
spectively. The user must always indicate the desired size, while best defaults to 1 if left
unspecified. Moreover, the name of a selection criterion ("AIC" or "BIC") may be given as
the size argument, in which case the submodel with the smallest criterion value is extracted.
For “lmSelect” methods, the size parameter has no meaning and is not defined. Lastly,
methods that return scalar values – i.e., deviance(), logLik(), AIC(), BIC() – can extract
more than one submodel at a time if passed a numeric vector as an argument to either size
(e.g., size = 5:10) or best (e.g., best = 1:3).

4. Case study: Variable selection for weather forecasting
Over the last decades the field of weather forecasting made steady and substantial im-
provements especially through improvements in numerical weather prediction (NWP) mod-
els (Bauer et al. 2015). Starting from Glahn and Lowry (1972) the outputs from these
physically-based large-scale (typically global) NWP models is statistically post-processed to
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Method Description
print() Print object
plot() Plot RSS (and information criteria)
image() Heatmap of selected regressors for “lmSubsets” only
summary() Summary statistics
variable.names() Extract variables names
formula() Extract formula object
model.frame() Extract (full) model frame
model.matrix() Extract model matrix
model.response() Extract model response
refit() Fit subset “lm” model
coef() Extract regression coefficients
vcov() Extract covariance matrix
fitted() Extract fitted values
residuals() Extract residual values
deviance() Extract deviance (RSS)
logLik() Extract log-likelihood
AIC() Extract AIC values
BIC() Extract BIC values

Table 4: S3 methods for “lmSubsets” and “lmSelect” objects.

correct small-scale biases and obtain predictions for specific locations. Below we use such
model output statistics (MOS) to predict temperature at a specific station (Innsbruck Air-
port, Austria) based on a wide range of NWP quantities from the nearest NWP grid point.
Variable subset selection is relevant here because it is not obvious which quantities beyond
the temperature NWP forecasts should enter the MOS regression.
More specifically, we model 00UTC temperature observations (in degree Celsius) based on
the corresponding 24-hour reforecast ensemble means from the Global Ensemble Forecast Sys-
tem (GEFS, Hamill et al. 2013) for meteorological station Innsbruck Airport (11120; 47.260,
11.357) from 2011-01-01 to 2015-12-31. The data frame IbkTemperature contains 1824 daily
observations/forecasts for the observed response, 36 NWP outputs, and five deterministic
time trend/season patterns that are available as potential regressors. The NWP variables
include several temperature quantities (in degree Kelvin, e.g., 2-meter, minimum, maximum,
soil) as well as several quantities capturing precipitation, wind, and fluxes among others.
See ?IbkTemperature for more details. The data from the NOAA (United States National
Oceanic and Atmospheric Administration) are obtained from http://www.esrl.noaa.gov/
psd/forecasts/reforecast2/ (reforecasts) and http://www.ogimet.com/synops.phtml.
en (observations), respectively.
To start the analysis the data from the lmSubsets package can be loaded and for simplicity
a couple of days with some missing values are omitted.

R> data("IbkTemperature", package = "lmSubsets")
R> IbkTemperature <- na.omit(IbkTemperature)

First, a simple climatological model for the temperature (temp) with a linear trend (time)

http://www.esrl.noaa.gov/psd/forecasts/reforecast2/
http://www.esrl.noaa.gov/psd/forecasts/reforecast2/
http://www.ogimet.com/synops.phtml.en
http://www.ogimet.com/synops.phtml.en
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Figure 2: Observed temperature at Innsbruck Airport (gray) and fitted values from the
climatological model (m0, black) and the simple MOS (m1, red).

and a harmonic seasonal pattern (sin/cos for the annual and sin2/cos2 for the bi-annual
frequencies).

R> m0 <- lm(temp ~ time + sin + cos + sin2 + cos2, data = IbkTemperature)

This model does not make use of any NWP outputs and is used as a basic reference model
against which the subsequent MOS models can be compared. Second, the model is updated
to a simple MOS by including the most obvious direct model output – 2-meter temperature
(t2m) – in addition to the season/trend regressors.

R> m1 <- update(m0, . ~ . + t2m)

A graphical comparison of the raw data and the fitted values from both models is provided
in Figure 2. The corresponding estimated coefficients (and standard errors) are shown in
Table 5 (produced with memisc, Elff 2016). This shows that, not surprisingly, inclusion of
the 2-meter temperature leads to substantial (and highly significant) improvements. The sea-
son/trend coefficients are dampened but remain significant which means that not all seasonal
temperature pattern at Innsbruck Airport are resolved in the coarse NWP grid.
Subsequently, we now try to improve the MOS by not only including the direct model output
for 2-meter temperature but also further NWP model outputs. As a starting point we force
the regressors from m1 into the model and use all-subsets regression to select the relevant
regressors from the remaining 35 NWP variables.

R> ms2 <- lmSubsets(temp ~ ., data = IbkTemperature,
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Figure 3: Best RSS and associated BIC for all subset sizes considered in ms2 (left) and ms3
(right).

+ include = c("t2m", "time", "sin", "cos", "sin2", "cos2"))
R> m2 <- refit(ms2, size = "BIC")

After obtaining the all-subsets regression ms2 with lmSubsets() the best BIC solution is
extracted and turned into a “lm” model with refit(). The more costly all-subsets regression
is solved here to gain more insights into the selected variables not only for the best-BIC
solution but also other models.
To assess whether our initial MOS strategy in m1 (and forced into m2) is really the most
suitable we also carry out another all-subsets regression without restricting the search space.

R> ms3 <- lmSubsets(temp ~ ., data = IbkTemperature)
R> m3 <- refit(ms3, size = "BIC")

Obtaining ms3 is computationally somewhat more costly than ms2 but still very fast taking
only a couple of seconds on standard PCs.
To assess the subset selections, Figure 3 shows a graphical summary of best RSS and as-
sociated BIC for all subset sizes considered in ms2 and ms3, respectively. The plots can be
easily produced by plot(summary(...)) and start with subset size 8 for ms2 because seven
variables are forced into the model while in ms3 only the intercept is always included. For
both models the RSS and BIC curves look rather similar and the best-BIC models both have
13 regressors.
The corresponding selected variables can be seen in Table 5 produced by mtable(m1, m2,
m3, m4). This shows that both m2 and m3 are rather similar with respect to the selected
variables and corresponding coefficients. However, interestingly the direct model output t2m
is not selected for m3 and instead the soil temperature (st) as well as the maximal 2-meter
temperature (tmax2m) and temperature on the so-called 2 PVU surface (t2pvu) are used which
are selected in addition to t2m in m2. Additionally, various other meteorological quantities are
selected that improve the forecasting model further, e.g., soil moisture vsmc) among others.
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m0 m1 m2 m3
(Intercept) −458.732∗∗∗ −345.252∗∗ −666.584∗∗∗ −661.700∗∗∗

(119.936) (109.212) (95.349) (95.225)
time 0.231∗∗∗ 0.132∗ 0.149∗∗ 0.147∗∗

(0.060) (0.054) (0.047) (0.047)
sin −2.433∗∗∗ −1.234∗∗∗ 0.522∗∗∗ 0.811∗∗∗

(0.121) (0.126) (0.147) (0.120)
cos −8.716∗∗∗ −6.329∗∗∗ −0.812∗∗

(0.120) (0.164) (0.273)
sin2 0.051 0.240∗ −0.794∗∗∗ −0.870∗∗∗

(0.120) (0.110) (0.119) (0.118)
cos2 −0.380∗∗ −0.332∗∗ −1.067∗∗∗ −1.128∗∗∗

(0.120) (0.109) (0.101) (0.097)
t2m 0.318∗∗∗ 0.055

(0.016) (0.029)
sshnf 0.016∗∗∗ 0.018∗∗∗

(0.004) (0.004)
vsmc 20.200∗∗∗ 20.181∗∗∗

(3.115) (3.106)
tmax2m 0.145∗∗∗ 0.181∗∗∗

(0.037) (0.023)
st 1.077∗∗∗ 1.142∗∗∗

(0.051) (0.043)
wr 0.450∗∗∗ 0.505∗∗∗

(0.109) (0.103)
t2pvu 0.064∗∗∗ 0.149∗∗∗

(0.011) (0.028)
mslp −0.000∗∗∗

(0.000)
p2pvu −0.000∗∗

(0.000)
AIC 9838.5 9493.6 8954.9 8948.2
BIC 9877.1 9537.7 9032.0 9025.3
Deviance 23605.3 19506.5 14411.1 14357.9
sigma 3.6 3.3 2.8 2.8
R-squared 0.8 0.8 0.9 0.9

Table 5: Estimated regression coefficients (and standard errors) along with further summary
statistics for the climatological model m0 and the three MOS models (m1–m3).

To gain further insight into the best-subset selection for various sizes the image() method
is useful. Figure 4 and Figure 5 show the results for ms2 and ms3, respectively, for subset
sizes up to 20 variables. The dark cells in the heatmap show the variables that are selected
while the best-BIC solution is highlighted with a red rectangle and by underlining the variable
names in the x-axis labels. While there are many similarities between the patterns shown,
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Subset selection
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Figure 4: Subset selection for ms2.
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Figure 5: Subset selection for ms3.

it is striking that t2m is not considered for any of the subsets in ms3 while we forced it into
ms2. The decision to always include the deterministic season/trend regressors, however, is
confirmed as some of these regressors are already selected for low subset sizes and all of them
are selected from size 14 onwards.
Nevertheless, the differences between m2 and m3 in terms of model fit are fairly small compared
to the reference models m0 and m1. Comparing the BIC and the root mean squared error
(RMSE) gives
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R> BIC(m0, m1, m2, m3)

df BIC
m0 7 9877.073
m1 8 9537.650
m2 14 9031.992
m3 14 9025.267

R> sqrt(sapply(list(m0, m1, m2, m3), deviance)/nrow(IbkTemperature))

[1] 3.602371 3.274711 2.814703 2.809505

showing that m2 and m3 improve the model substantially over m0 and m1. By construction the
BIC of m3 is lower than that of m2 but not by much.
In summary, this shows that best-subset selection can easily identify relevant variables beyond
the direct model output for MOS regressions, yielding substantial improvements in forecasting
quality. In a full meteorological application this should, of course, be further tested using
cross-validation or other out-of-sample assessments. But as this is beyond the scope of this
paper we confine ourselves to the in-sample assessment presented here.
To conclude, it is also worth pointing out that recently there has been increasing interest
in MOS models beyond least-squares linear regression. Incorporating heteroscedasticity is
important ensemble MOS models as well as censoring or truncation for quantities like precip-
itation or wind (see the crch package of Messner et al. 2016a for some examples). All-subsets
regression for those models would be much more burdensome and is not available in lmSubsets.
An alternative solution in those situations is for example boosting as proposed by Messner
et al. (2016b).

5. Case study
TODO: by Ana

6. Benchmark
TODO: Achim: Below are some rough ideas...Before going into detail about this
one should check what other authors in this field have used for setting up their
regressions. Following their templates might make the design easier and more convincing
for the reviewers.

Data-generating process:

• Allow increasing M and/or N .

• A certain fixed fraction of variables could be relevant (say 20%).

• All regressors could have the same distribution, e.g., standard normal or uniform on
[−1, 1].
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• The relevant variables could also all have the same coefficient or follow a linearly de-
creasing pattern for example. All irrelevant variables have coefficient zero.

• Then one could consider two values of M (say, 200 and 1000) and a sequence of Ns
(say, 20, 40, . . . ).

Competitors:

• lmSubsets and lmSelect, either exactly or with certain relaxations.

• Other exact solutions (at least: leaps).

• Approximate solutions (at least: subselect and/or glmulti).

• Penalized solutions (at least: glmnet).

Outcome measurements:

• Computation time of the R functions (especially for exact solutions).

• Proportion of correctly selected regressors.

• RSS, AIC, BIC.
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