
Utilizing maticce to estimate transitions in

continuous character evolution

Andrew Hipp and Marcial Escudero

August 26, 2009

1 Introduction

This document provides an overview of the maticce package, which serves three
primary purposes. First, it implements an information-theoretic approach to
estimating where on a phylogeny there has been a transition in a continuous
character. As currently implemented, the approach assumes that (1) such transi-
tions are appropriately modeled as shifts in optimum / equilibrium of a character
evolving according to an Ornstein-Uhlenbeck process; (2) strength of constraint
/ rate of evolution toward the optimum is constant over the tree, as is variance;
and (3) all branches on which a change could occur are identified. These assump-
tions can be relaxed in future versions if needed. Second, the package provides
helper functions for the ouch package, in which all likelihood calculations are
performed. For example, the package automates the process of painting regimes
(described in the Painting Regimes section below) for the hansen function of
ouch, specifying nodes at which the regime changes. It also provides functions
for identifying most recent common ancestors and all descendents of a particular
node. Users of ouch who want to handle large numbers of analyses may find the
routines for summarizing analyses over trees and over regimes useful as well.
Finally, maticce provides a flexible set of simulation functions for visualizing
how different model parameters affect (i.e., what they ’say’ about) our inference
of the evolution of a continuous character on a phylogenetic tree.

This document also provides a worked example of analyzing a continuous
character dataset that illustrates most of the maticce features. Working through
this example will I expect address most questions that should come up during
a typical analysis.

2 Package Overview

The maticce package currently implements functions in the following categories:

• Extracting information from ouch-style (S4 class ouchtree) trees

• Painting regimes on a batch of ouch-style trees

1



• Performing batch analyses in ouch over trees and over regimes

• Summarizing analyses

• Simulating data under explicit models for visualization purposes

Functions in the first two categories will be of general utility to ouch users;
functions in the third category are utilized to perform analyses over trees and
over models, and in the fourth to summarize these with regard to the hypoth-
esis that there has been a shift in continuous character on a given branch of
a phylogenetic tree. While these latter two categories are more specific, the
functions can be easily modified to address other multiple-tree / multiple-model
questions.

3 Getting started

In case you aren’t familiar with R, the following commands will get you started.

> library(maticce) # load maticce and required packages

> data(carex) # load dataset

> attach(carex) # attach dataset to search path

> ovales.tree <- ape2ouch(ovales.tree) # convert the Bayes consensus to an ouchtree object

> trees <- lapply(ovales.bayesTrees[1:10], ape2ouch) # convert the first 10 trees visited in the MCMC analysis to ouchtree objects

Note that although the sample trees provided (carex[[’ovales.tree’]]
and carex[[’ovales.bayesTrees’]]) are ultrametric, ultrametricity is not
strictly required for most analyses in maticce. The simulations implemented
in ouSim do, however, assume ultrametricity. Trees in the carex dataset com-
prise a partial phylogeny of sedges; for information about the tree, you can use
help(carex) or ?carex to call the help file for the dataset, which includes the
reference. The data associated with this tree (carex[[’ovales.data’]]) are
log-transformed mean chromosome data. Because the model underlying mat-
icce is a generalized least squares regression model, standard assumptions about
data normality apply and should be considered at the outset of any analysis.

4 Extracting information from trees

Three functions are available to extract information from an ouchtree object:

• isMonophyletic: returns a T or F depending on whether the taxa identi-
fied are monophyletic on the tree provided

• nodeDescendents: identifies all descendents of a given node on a tree

• mrcaOUCH: identifies the most recent common ancestor of a given set of
taxa

2



These functions can be used interactively to identify nodes on the tree for
analysis. Because the batch-analysis functions in maticce identify nodes based
on taxa (see explanation in the section on ’Performing batch analyses’), nodes
are provided as a list of vectors, each vector containing all taxa descendent
from the node of interest. You can generate these lists manually by typing lists
of names into vectors, or you could use the following if you want to explicitly
designate all taxa for each node by selecting from a list:

> nodes <- list(8) # assuming you want 8 nodes
> for(i in 1:length(nodes)) nodes[[i]] <- select.list(otree@nodelabels, multiple = T)

Alternatively, if you want to designate the node more quickly by just selecting
the most recent common ancestor of a set of taxa:

> for(i in 1:length(nodes)) {
> ancestor <- mrcaOUCH(select.list(otree@nodelabels, multiple = T), otree)
> nodes[[i]] <- nodeDescendents(otree, ancestor)
> }

These functions are all documented under isMonophyletic. Note that for
many analyses that you might want to perform over a set of trees, you will
need to determine for each tree whether each node of interest is present on
the tree. There are alternative ways to do this (for example, a relatively new
function in ape (makeNodeLabel) generates node labels by sorting and saving the
descendents of each node to a file, then using md5sum to get a unique node label
that uniquely identifies all the nodes in a tree with respect to its descendents.
In maticce, node identity is checked automatically during batch analyses (see
section Batch analyses below) by defining nodes based on their descendents,
then checking for monophyly on each tree. For standard analyses in maticce,
you do not have to worry about this yourself.

5 Painting regimes

In the hansen function of ouch, Ornstein-Uhlenbeck models are specified by
specifying for each phylogenetic branch one and only one selective regime that
governs the evolution of individuals that occupy that branch. In the maticce ap-
proach, selective regime is an overly specific description, because the dynamics
of trait evolution may shift significantly at cladogenesis for reasons that have
nothing to do with natural selection. For consistency with ouch, the term regime
is retained in maticce, but it is used here to refer to the entire set of lineage-
specific stationary distributions on a tree rather than the branch-specific set
of selective pressures that is implied by selective regime. Hereafter, and in
the maticce documentation, regime is used interchangeably for the tree-based
model (the vector returned by paintBranches and visualized using plot(tree,
regimes=regime)). Two functions are available for painting regimes; both re-
turn objects that may be used directly in the hansen function of ouch:

3



• paintBranches: returns the single regime for character transitions occur-
ing at all specified nodes

• regimeVectors: returns all possible regimes for specified nodes, up to a
maximum of maxNodes transitions

• regimeMaker: returns regimes defined by a matrix, with each row speci-
fying which nodes permit character transitions

The paintBranches function is typically called from within regimeVectors,
but it can be called separately. Nodes can be designated by number or taxa;
the function assumes the latter only if it receives a list to evaluate instead of a
vector.

> ou2 <- paintBranches(list(ovales.nodes[[2]]), ovales.tree)

> plot(ovales.tree, regimes = ou2, cex = 1.2)

0.0 0.2 0.4 0.6 0.8 1.0

time

athrostachya
xerantica

adusta
pachystachya
macloviana
subfusca
integra

peucophila

microptera

haydeniana
ebenea

praticola
foenea
bohemica
phaeocephala
preslii
argyrantha

0.0 0.2 0.4 0.6 0.8 1.0

time

straminea
hormathodes
ozarkana
suberecta

albolutescens

scopariaVtessellata

scopariaVscoparia
alata
vexans
longii
feta
ovalis3098
normalis
molesta
merrittfernaldii

bicknellii
muskingumensis
oronensis

festucacea

tincta

teneraVtenera
missouriensis
teneraVechinodes
buffaloriver

tribuloidesVtribuloides

projecta

cristatella
bebbii
crawfordii
opaca
shinnersii

molestiformis
reniformis
brevior
hyalina
cumulata

1
37

Figure 1: ovales.tree with coloring according to ou2

The regime can be used directly in a call to hansen or the plot method
for an ouchtree object (Figure 1). Note that paintBranches paints the crown
group designated by the taxa you give it. As written now, there is not an
option to begin painting on the branch above that node (i.e., to pain the stem
groups designated by your list of taxon-vectors). In practice, this is not likely
to affect your conclusions. However, it might, because the Ornstein-Uhlenbeck
calculations integrate over (1) the amount of time that a lineage occupies each
component of the regime and (2) the amount of time elapsed since the end of each
regime component. If this is important to you, write me, and we can adjust the
paintBranches function to allow a mix of branch-based and node-based regime
definitions.

4



6 Batch analyses

The goal of maticce is to make regime-definition and batch analyses of multiple
models and multiple trees straightforward, so that researchers can focus on spec-
ifying their models and interpreting the results rather than on the book-keeping
of running numerous analyses. The things a researcher should be thinking about
are:

• Which nodes are you interested in testing? The choice of which nodes
you are considering will have the strongest effect on your estimates of the
support for a character transition having occurred at those nodes. This is
a standard issue in model-fitting: the choice of which models to consider
is the primary question once you have data in hand.

• How many transitions are plausible on a single tree? The feasibility of
studying a large number of nodes is governed by how many simultaneous
transitions you allow. Suppose you have 15 nodes that are of interest.
Testing models that allow transitions at anywhere between zero and 15
nodes would entail testing 32,768 models. This would be too long to be
feasible. Allowing changes at anywhere between zero and four nodes would
entail testing a more manageable 1,941 models.

• How much do you trust poorly-supported nodes? Do you want to consider
them at all? maticce allows you to analyze over a set of trees, e.g. trees
visited in a Bayesian (MCMC) analysis or a set of bootstrap trees. The
summary function will give you an estimate of the support for a transition
at each node you specify, both conditioned on trees that possess that node
and averaged over all trees. If you have some reason for trusting the
node in spite of low support (because, for example, it holds together a
morphologically coherent group), you might want to give some credence
to the support value that conditions only on trees that possess that node.

> # First, analyze with maxNodes set to 2

> ha.4.2 <- runBatchHansen(ovales.tree, ovales.data,

+ ovales.nodes[1:4], maxNodes = 2, brown = T)

> print(summary(ha.4.2))

Summarizing hansenBatch analyses over 1 trees and 12 models
-----------------------------------------------------------
ESTIMATED SUPPORT FOR CHANGES OCCURRING AT DESIGNATED NODES
Averaged over all trees:

1 2 3 4
AIC.weight 0.4306845 0.8848683 0.15490978 0.15202585
AICc.weight 0.4060012 0.8824765 0.14168053 0.13901638
BIC.weight 0.3189039 0.8740303 0.09500061 0.09311196

Support conditioned on trees that possess the node

5



1 2 3 4
AIC.weight 0.4306845 0.8848683 0.15490978 0.15202585
AICc.weight 0.4060012 0.8824765 0.14168053 0.13901638
BIC.weight 0.3189039 0.8740303 0.09500061 0.09311196

MODEL-AVERAGED PARAMETERS
alpha = 312.4266
sigma^2 = 5.192254

> # Then, analyze with maxNodes set to 4

> ha.4.4 <- runBatchHansen(ovales.tree, ovales.data,

+ ovales.nodes[1:4], maxNodes = 4, brown = T)

> print(summary(ha.4.4))

Summarizing hansenBatch analyses over 1 trees and 17 models
-----------------------------------------------------------
ESTIMATED SUPPORT FOR CHANGES OCCURRING AT DESIGNATED NODES
Averaged over all trees:

1 2 3 4
AIC.weight 0.5426478 0.9039240 0.2877716 0.2909109
AICc.weight 0.4914288 0.8965165 0.2385572 0.2404165
BIC.weight 0.3551409 0.8795015 0.1317644 0.1315286

Support conditioned on trees that possess the node
1 2 3 4

AIC.weight 0.5426478 0.9039240 0.2877716 0.2909109
AICc.weight 0.4914288 0.8965165 0.2385572 0.2404165
BIC.weight 0.3551409 0.8795015 0.1317644 0.1315286

MODEL-AVERAGED PARAMETERS
alpha = 316.4656
sigma^2 = 5.246654

> # Then, assess the effects of phylogenetic uncertainty by analyzing over a set of trees

> ha.4.2.multi <- runBatchHansen(trees, ovales.data,

+ ovales.nodes[1:4], maxNodes = 2, brown = T)

> print(summary(ha.4.2.multi))

Summarizing hansenBatch analyses over 10 trees and 12 models
-----------------------------------------------------------
ESTIMATED SUPPORT FOR CHANGES OCCURRING AT DESIGNATED NODES
Averaged over all trees:

1 2 3 4
AIC.weight 0.4574880 0.9076490 0.16606320 0.16677231
AICc.weight 0.4484254 0.9057080 0.15032537 0.15082069
BIC.weight 0.4102887 0.8987438 0.09771622 0.09766807

6



Support conditioned on trees that possess the node
1 2 3 4

AIC.weight 0.5718600 0.9076490 0.16606320 0.16677231
AICc.weight 0.5605317 0.9057080 0.15032537 0.15082069
BIC.weight 0.5128608 0.8987438 0.09771622 0.09766807

MODEL-AVERAGED PARAMETERS
alpha = 340.0955
sigma^2 = 5.654983

In the examples above, support for node two is relatively little affected by
the value of maxNodes.

> ouSim.ha.4.2 <- ouSim(ha.4.2, tree = ovales.tree)

> plot(ouSim.ha.4.2, colors = ou2)

0 200 400 600 800 1000

4.
0

4.
2

4.
4

4.
6

Time

Tr
ai

t v
al

ue

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 2: Simulated character on ovales.tree at model-averaged theta values,
with coloring according to ou2

What is the relative support for the Brownian motion model, the OU model
that implies no transition in character state, and the OU-2 model with a change
only at node 2? We can identify models by inspecting the regime matrix; in this
case, model 7 has a change only at node 2, and model 11 is the OU model with
no change:

> ha.4.2[['regMatrix']][['overall']]

1 2 3 4
1 1 1 0 0
2 1 0 1 0
3 1 0 0 1
4 1 0 0 0
5 0 1 1 0
6 0 1 0 1

7



7 0 1 0 0
8 0 0 1 1
9 0 0 1 0
10 0 0 0 1
11 0 0 0 0

Then we can find the likelihood and parameter estimates of these models on
a given tree:

> ha.4.2[['hansens']][[1]][c(7, 11, 'brown'), ]

loglik dof sigma.squared theta / alpha
7 51.75142 4 5.16258108 310.762680
11 39.57676 3 0.09810907 3.341806
brown 31.50503 2 0.04205436 4.351195

or the information criterion weights:

> summary(ha.4.2)[['modelsMatrix']][[1]][c(7, 11, 'brown'), ]

AICwi AICcwi BICwi
7 3.235051e-01 3.691902e-01 5.303850e-01
11 4.537212e-06 6.148318e-06 1.992244e-05
brown 3.851020e-09 5.912695e-09 4.528691e-08

Considering just these models, model 7 is not overwhelmingly supported
(BIC weight = 0.530, AICc weight = 0.369), but it is much more strongly
supported than the Brownian motion model or the OU model with no change.
This points to the utility of model-averaging as a means of localizing character
transitions on a phylogenetic tree. Moreover, the fact that a character transition
is strongly supported only for node 2 tells us little about whether each node,
analyzed on its own, would support a character transition model over a no-
transition model. In fact, in the sample data, nodes 1, 2, 3, 4, and 7 all support
a transition over no-transition model. You can investigate this node-by-node
using the multiModel function.

> layout(matrix(1:9, 3, 3))

> for(i in 1:8) {

+ mm <- multiModel(carex[['ovales.tree']], ovales.data, ovales.nodes[[i]])

+ pie(mm[['IC']][['BICwi']], labels = mm[['IC']][['names']],
+ col = rainbow(length(mm[['IC']][['names']])), main = paste("Node",i,"BICwi"))

+ }

8



whole.brownwhole.ou1
whole.ou2
part.brown

part.ou

Node 1 BICwi

whole.brownwhole.ou1
whole.ou2

part.brown
part.ou

Node 2 BICwi

whole.brownwhole.ou1
whole.ou2

part.brown

part.ou

Node 3 BICwi

whole.brownwhole.ou1whole.ou2

part.brown

part.ou

Node 4 BICwi

whole.brown
whole.ou1

whole.ou2
part.brownpart.ou

Node 5 BICwi

whole.brown

whole.ou1

whole.ou2

part.brownpart.ou

Node 6 BICwi

whole.brown
whole.ou1

whole.ou2

part.brown
part.ou

Node 7 BICwi

whole.brown

whole.ou1

whole.ou2 part.brown
part.ou

Node 8 BICwi

The benefit of doing the global test first using runBatchHansen and related
functions is that you first test, globally, whether the node you are looking at
shows significantly stronger support for a transition in character state than any
other selected node on the tree. Then, you can investigate alternative models
using the multiModel function.

9


	Introduction
	Package Overview
	Getting started
	Extracting information from trees
	Painting regimes
	Batch analyses

