
Efficient R: practical solutions
Dr Colin Gillespie

Before starting the questions, make sure you install the rbenchmark

package

install.packages("rbenchmark")

To the load the package use

library("rbenchmark")

Each practical corresponds to a chapter in the notes.

Practical 1

1. Reproduce the timing results in chapter 1 using the benchmark

function from the rbenchmark package.

2. Case study In this example, we are going to investigate loading
a large data frame. First, we’ll generate a large matrix of random
numbers and save it as a csv file:1 1 If setting N=1e6 is too large for your

machine, reduce it at bit. For example,
N=50,000.

N = 1e5

m = as.data.frame(matrix(runif(N), ncol=1000))

write.csv(m, file="example.csv", row.names=FALSE)

We can read the file the back in again using read.csv

dd = read.csv("example.csv")

To get a baseline result, time the read.csv function call above.

system.time(read.csv("example.csv"))

## user system elapsed

## 0.232 0.004 0.237

We will now look ways of speeding up this step.

(a) Use the nrows argument to set the number of rows that will be
read from your file.2 2 Hint, use nrow(m) to determine how

many rows are in your matrix.(b) Set comment.char="" to turn off interpretation of comments.

(c) Explicitly define the classes of each column using colClasses

in read.csv, for example, if we have 1000 columns that all have
data type numeric, then:

read.csv(file="example.csv",

colClasses=rep("numeric", 1000))

(d) Use the save and load functions:
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save(m, file="example.RData")

load(file="example.RData")

Which of the above give the biggest speed-ups? Are there any
downsides to using these techniques? Do your results depend on
the number of columns or the number of rows?

## 1. Using RData files is the fastest - although

## you have to read the data in first. Set

## colClasses also produces an good speed-up.

## 2. Setting colClasses R is no longer checking

## your data types. If your data is changing - for

## example it's coming from the web or a database,

## this may be problem.

## 3. The results do depend on the number of

## columns, as this code demonstrates

N = c(1, 10, 100, 1000, 1000, 10000)

l = numeric(5)

for (i in seq_along(N)) {

m = as.data.frame(matrix(runif(N[6]), ncol = N[i]))

write.csv(m, file = "example.csv", row.names = FALSE)

cc = rep("numeric", N[i])

l[i] = system.time(read.csv("example.csv", colClasses = cc))[3]

}

l

## Notice that when we have a large number of

## columns, we get a slow down in reading in data

## set (even though we have specified the column

## classes). The reason for this slow down is that

## we are creating a data frame and each column has

## to be initialised with a particular class.
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Practical 2

1. In this question, we’ll compare matrices and data frames. Suppose
we have a matrix, d_m

##For fast computers

#d_m = matrix(1:1000000, ncol=1000)

##Slower computers

d_m = matrix(1:10000, ncol=100)

dim(d_m)

## [1] 100 100

and a data frame d_df:

d_df = as.data.frame(d_m)

colnames(d_df) = paste("c", 1:ncol(d_df), sep="")

(a) Using the following code, calculate the relative differences
between selecting the first column/row of a data frame and
matrix.

benchmark(replications=1000,

d_m[1,], d_df[1,], d_m[,1], d_df[,1],

columns=c('test', 'elapsed', 'relative'))

Can you explain the result? Try varying the number of replica-
tions.

## Two things are going on here

## 1. The very large difference when selecting columns and rows (in data frames) is because the data is stored in column major-order. Although the matrix is also stored in column major-order, because everything is the same type, we can efficiently select values.

##2. Matrices are also more memory efficient:

m = matrix(runif(1e4), ncol=1e4)

d = data.frame(m)

object.size(m)

## 80200 bytes

object.size(d)

## 1120568 bytes

(b) When selecting columns in a data frame, there are a few differ-
ent methods. For example,

d_df$c10

d_df[,10]

d_df[,"c10"]

d_df[,colnames(d_df) == "c10"]

Compare these four methods.
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2. Consider the following piece of code:

a = NULL

for(i in 1:n)

a = c(a, 2 * pi * sin(i))

This code calculates the values:

2π sin(1), 2π sin(2), 2πsin(3), . . . , 2πsin(n)

and stores them in a vector. Two obvious ways of speeding up this
code are:

• Pre-allocate the vector a for storing your results.

• Remove 2 × π from the loop, i.e. at the end of the loop have the
statement: 2*pi*a.

Try the above techniques for speeding up the loop. Vary n and plot
your results.

3. R is an interpreted language; this means that the interpreter ex-
ecutes the program source code directly, statement by statement.
Therefore, every function call takes time.3 Consider these three 3 This example is for illustrative pro-

poses. Please don’t start worrying about
comments and brackets.

examples:

n = 1e6

## Example 1

I = 0

for(i in 1:n) {

10

I = I + 1

}

## Example 2

I = 0

for(i in 1:n){

((((((((((10))))))))))

I = I + 1

}

## Example 3

I = 0

for(i in 1:n){

##This is a comment

##But it is still parsed

##So takes time

##But not a lot

##So don't worry!

10

I = I + 1

}

Using the benchmark function, time these three examples.
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Practical 3: parallel programming

1. To begin, load the parallel package and determine how many
cores you have

library(parallel)

detectCores()

2. Run the parallel apply example in the notes.

• On your machine, what value of N do you need to use to make
the parallel code run quicker than the standard serial version?

• When I ran the benchmarks, I didn’t include the makeCluster

and stopCluster functions calls. Include these calls in your
timings. How does this affect your benchmarks?

3. Run the dice game Monte-Carlo example in the notes. Vary the
parameter M.4 4 Try setting M=50 and varying N.

Solutions

Solutions are contained within this package:

library("nclRefficient")

vignette("solutions1", package="nclRefficient")


