
Programming: practical 2a

In this question, we are going to use a for statement to loop over a
large data set and construct some scatter plots. To generate the data,
run the following piece of R code

library("nclRprogramming")

data(dummy_data)

dd = dummy_data

The data frame dd represents an experiment, where we have ten
treatments: A, B, . . . , J and measurements at some time points. We
want to create a scatter plot of measurement against time, for each
treatment type.

1. First we create a scatter plot of one treatment:

plot(dd[dd$treatments=="A",]$time,

dd[dd$treatments=="A",]$measurement)
● ●

●

●

●

●

●

0 1 2 3 4 5 6

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

dd[dd$treatments == "A",]$time
dd

[d
d$

tr
ea

tm
en

ts
 =

=
 "

A
",

]$
m

ea
su

re
m

en
t

Figure 1: Measurements againts time.

Since the colnames are a bit long, let’s shorten them:

colnames(dd) = c("m", "t", "trts")

2. To generate a scatter-plot for each treatment, we need to iterate
over the different treatment types:

for(treat in unique(dd$trts)) {

plot(dd[dd$trts==treat,]$t,

dd[dd$trts==treat,]$m)

readline("Hit return for next plot\n")

}

A few questions:

• What does unique(dd$trts) give?

• In the for loop, what variable is changing? What are it’s possible
values?

• What does the readline function do?

3. The default axis labels aren’t great. So we can change the x-axis
label using xlab:

plot(dd[dd$trts==treat,]$t,

dd[dd$trts==treat,]$m,

xlab="Time")

Use ylab to alter the y-axis label.

4. To add a title to a plot we use the main argument, viz:

programming: practical 2a 2

plot(dd[dd$trts=="A",]$t,

dd[dd$trts=="A",]$m,

main="Treatment",

xlab="Time", ylab="Measurement")

● ●

●

●

●

●

●

0 1 2 3 4 5 6

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Treatment

Time

M
ea

su
re

m
en

t

Figure 2: Measurements againts time
with a title.

We can combine strings/characters using the paste function,

paste("Treatment", treat)

[1] "Treatment J"

Rather than have a static title, make the title of each plot display
the treatment type.

5. The y-axis range should really be the same in all graphics. Add a
ylim argument to fix the range.1 1 Hint: Work out the range before the

for loop.
6. At each iteration, use the message function to print the average

measurement level across all time points.

7. On each graph, highlight any observations with a blue point if they
are larger than the mean + standard deviations or less than the
mean - standard deviations. Use the points function to highlight a
point. 2 For example, to highlight the points (1,2) and (3, 4) we use 2 Hint: You don’t need if statements

here. Just subset your data frame and
pass this new data frame to the points
function.

the command:

points(c(1, 3), c(2, 4), col=2)

8. Suppose we wanted to save individual graphs. Add in the pdf

function to save the resulting graph. To get unique file names, use
the paste command:

filename = paste("file", treat, ".pdf", sep="")

9. Put your code, i.e. the for loop and plotting commands, in a
function which takes the data frame as an argument.

10. Alter your function to take another argument where you can save
the graph in a different directory.

Final piece of code

Solutions

Solutions are contained within this package:

library("nclRprogramming")

vignette("solutions2a", package="nclRprogramming")

