
Programming: Practical 2b
We wish to determine the properties on which a player is most likely to
land during a game of monopoly. To simplify things, we assume there
is only a single player, ignore everything to do with money and also
ignore the ‘Get out of Jail Free Cards’.

1 Monopoly: overview of the problem

The algorithm we will use is:

1. Begin the game on GO;

2. current := current + dice roll

3. Make a note of the new position.

• If we land on ‘Chance’ or ’Community Chest’, draw a card;

• If we land on ‘Go To Jail’, move to Jail;

• If we move, make a note of the new position;

4. Go back to step 2

After rolling the dice 100,000 times or so, stop.

2 Dice rolling

When we roll a single die, each side has an equal probability of
occurring. This means we can use the sample function to simulate a
die roll:

sample(c(1, 2, 3, 4, 5, 6), 1)

Or just the same

sample(seq(1, 6), 1)

Or

sample(1:6, 1)

To roll two dice, we simply call this function:

RollTwoDice = function() {

total = sample(1:6, 1) + sample(1:6, 1)

return(total)

}

Call the function RollTwoDice four times, what values did you get?

2.1 The Monopoly board

In monopoly there are forty properties or squares, see table 1 at the
end of this practical for a complete list. If we set the first square ‘Go’
to be number 1, then we can represent all forty squares as a vector in
R. For example

programming: practical 2b 2

This creates a vector of 40 values;

All values are initially zero

landings = numeric(40)

Then, when we land on a square we simply increase the associated
landings entry by one. Suppose we landed on ‘Old Kent Rd’, we
would represent this as:

landings[2] = landings[2] + 1

since ‘Old Kent Road’ is square 2 (see table 1).

• Complete: Write down the code if we landed on ‘Free Parking’?

• Complete: Write down the code if we landed on ‘Mayfair’?

2.2 Going round the board

Our first go at simulating Monopoly will ignore community chest,
chance cards, and the ‘Go To Jail’ square. This means that we are
simply going round the board. The code in the SimulateMonopoly

function, rolls the dice no_of_rolls time, and stores the squares that
are landed on in the vector landings.

SimulateMonopoly = function(no_of_rolls) {

landings = numeric(40)

Start at GO

current = 1

for(i in 1:no_of_rolls) {

current = current + RollTwoDice()

if(current > 40) {

current = current - 40

}

landings[current] = landings[current] + 1

}

return(landings)

}

no_of_rolls = 50000

We can then call the function using:

sim = SimulateMonopoly(no_of_rolls)

We can then plot the results

plot(sim/sum(sim), ylim=c(0, 0.06), type='l',

xlab="Square", ylab="Probability")

0 10 20 30 40

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Square

P
ro

ba
bi

lit
y

Figure 1: Probability of landing on
monopoly square.

• What does landings = numeric(40) do?

programming: practical 2b 3

• Explain the rationale for lines 9-12:

• Why do we divide by sum(sim) above?

• What happens to the plot as you increase no_of_rolls?

• What values are the probabilities converging to?

2.3 Incorporating Community Chest Cards

There are three community chest squares on the board - squares 3, 18

and 34. In the code below we will just consider square 3. There are
sixteen cards in total, hence the probability of drawing any particular
card is 1/16. In the code below we will only implement the first two
community chest cards:

CommunityChest = function(current) {

goto = current

u = runif(1)

if(u < 1/16) {

goto = 1#Move to Go

}else if(u < 2/16) {

goto = 11#Go To Jail :(

}

return(goto)

}

This function takes in the current position, with probability 1/16

we ‘Move to Go’, with probability 1/16 we ‘Go to Jail’ and with
probability 14/16 we stay in our current position. We now alter the
simulate function to incorporate the CommunityChest function:

SimulateMonopoly = function(no_of_rolls) {

landings = numeric(40)

Start at GO

current = 1

for(i in 1:no_of_rolls) {

current = current + RollTwoDice()

if(current > 40) {

current = current - 40

}

landings[current] = landings[current] + 1

if(current == 3) {

cc_move = CommunityChest(current)

if(cc_move != current){

current = cc_move

landings[current] = landings[current] + 1

}

programming: practical 2b 4

}

}

return(landings)

}

We can then call this function:

sim2 = SimulateMonopoly(no_of_rolls)

and plot

plot(sim2/sum(sim2), ylim=c(0, 0.06), type="l",

xlab="Square", ylab="Probability")

0 10 20 30 40

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Square

P
ro

ba
bi

lit
y

Figure 2: Probability of landing on
monopoly square with the first commu-
nity chest card implemented. Incorpo-
rating a single cummunity chest card
has very little effect. For this graphic, I
used 2 million simulations!

What is the the rationale for lines 14–20?

3 Additional questions

Each question adds an additional layer of complexity to your code.

1. Add in the two other community squares, i.e. squares 18 and 34

into the SimulateMonopoly code.

2. Add in ‘Go to Old Kent Road’ into your CommunityChest function.

3. Square 31 is ‘Go To Jail.’ Implement this in your main simulation
function.

4. Create a Chance function, that implements the first six Chance
cards. When you land on a Chance square, call this function.

5. Add in Community Chest card four.

6. Add in Chance card 8.

7. Add in Chance card 7, ‘Go back 3 spaces’.

8. Rolling a double (a pair of 1’s, 2’s, ..., 6’s) is special:

(a) Roll two dice (total1): total_score = total1

(b) If you get a double, roll again (total2) and total_score =

total1 + total2

(c) If you get a double, roll again (total3) and total_score =

total1 + total2 + total3

(d) If roll three is a double, Go To Jail, otherwise move total_score

4 Additional Information

Community Chest Cards

There are three community chest areas on the board (see Table 1). In
total, there are 16 community chest cards.

1. Advance to Go;

programming: practical 2b 5

Square Number Name Square Number Name

1 Go 11 Jail
2 Old Kent Road 12 Pall Mall
3 Community Chest 13 Electric Company
4 WhiteChapel Road 14 Whitehall
5 Income Tax 15 Northumberland Avenue
6 King’s Cross Station 16 Marylebone Station
7 The Angel Islington 17 Bow Street
8 Chance 18 Community Chest
9 Euston Road 19 Marlborough Street
10 Pentonville Road 20 Vine Street

21 Free Parking 31 Go To Jail
22 Strand 32 Regent Street
23 Chance 33 Oxford Street
24 Fleet Street 34 Community Chest
25 Trafalgar Square 35 Bond Street
26 Fenchurch Street Station 36 Liverpool St Station
27 Leicester Square 37 Chance
28 Coventry St 38 Park Lane
29 Water Works 39 Super Tax
30 Piccadilly 40 Mayfair

Table 1: Monopoly squares with associ-
ated square numbers

2. Go to jail;

3. Go to Old Kent Road;

4. Take a Chance card instead;

Chance Cards

A Chance card is most likely to move players. There are three chance
areas on the board (see Table 1). There are 16 chance cards in total, of
which eight cards move the player:

1. Advance to Go;

2. Advance to Trafalgar Square;

3. Advance to Pall Mall;

4. Go directly to Jail;

5. Take a trip to Marylebone Station;

6. Advance to Mayfair;

7. Go back 3 spaces;

8. Advance token to nearest Utility. The utility squares are the water
works and the electric company.

Solutions

Solutions are contained within this package:

programming: practical 2b 6

library(nclRprogramming)

vignette("solutions2b", package="nclRprogramming")

	Monopoly: overview of the problem
	Dice rolling
	Additional questions
	Additional Information

