
Programming: practical 2a solutions

In this question, we are going to use a for statement to loop over a
large data set and construct some scatter plots. To generate the data,
run the following piece of R code

library("nclRprogramming")

data(dummy_data)

dd = dummy_data

The data frame dd represents an experiment, where we have ten
treatments: A, B, . . . , J and measurements at some time points. We
want to create a scatter plot of measurement against time, for each
treatment type.

1. First we create a scatter plot of one treatment:

plot(dd[dd$treatments=="A",]$time,

dd[dd$treatments=="A",]$measurement)
● ●

●

●

●

●

●

0 1 2 3 4 5 6

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

dd[dd$treatments == "A",]$time

dd
[d

d$
tr

ea
tm

en
ts

 =
=

 "
A

",
]$

m
ea

su
re

m
en

t
Figure 1: Measurements againts time.

Since the colnames are a bit long, let’s shorten them:

colnames(dd) = c("m", "t", "trts")

2. To generate a scatter-plot for each treatment, we need to iterate
over the different treatment types:

for(treat in unique(dd$trts)) {

plot(dd[dd$trts==treat,]$t,

dd[dd$trts==treat,]$m)

readline("Hit return for next plot\n")

}

A few questions:

• What does unique(dd$trts) give?

It gives all treatments.

• In the for loop, what variable is changing? What are it’s possible
values?

#The treat variable is changing. It goes through the different treatments.

• What does the readline function do?

3. The default axis labels aren’t great. So we can change the x-axis
label using xlab:

plot(dd[dd$trts==treat,]$t,

dd[dd$trts==treat,]$m,

xlab="Time", ylab="Measurement")

Use ylab to alter the y-axis label.

programming: practical 2a solutions 2

4. To add a title to a plot we use the main argument, viz:

plot(dd[dd$trts=="A",]$t,

dd[dd$trts=="A",]$m,

main="Treatment",

xlab="Time", ylab="Measurement") ● ●

●

●

●

●

●

0 1 2 3 4 5 6

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Treatment

Time

M
ea

su
re

m
en

t

Figure 2: Measurements againts time
with a title.

We can combine strings/characters using the paste function,

paste("Treatment", treat)

[1] "Treatment J"

Rather than have a static title, make the title of each plot display
the treatment type.

plot(dd[dd$trts==treat,]$t,

dd[dd$trts==treat,]$m,

main=paste("Treament", treat),

xlab="Time", ylab="Measurement")

5. The y-axis range should really be the same in all graphics. Add a
ylim argument to fix the range.1 1 Hint: Work out the range before the

for loop.

range(dd$m)

[1] -1.639262 8.113143

plot(dd[dd$trts==treat,]$t,

dd[dd$trts==treat,]$m,

main=paste("Treament", treat),

xlab="Time", ylab="Measurement",

ylim=c(-2, 10))

6. At each iteration, use the message function to print the average
measurement level across all time points.

##Within the for loop have the line

message(mean(dd[dd$trts==treat,]$m))

7. On each graph, highlight any observations with a blue point if they
are larger than the mean + standard deviations or less than the
mean - standard deviations. Use the points function to highlight a
point. 2 For example, to highlight the points (1,2) and (3, 4) we use 2 Hint: You don’t need if statements

here. Just subset your data frame and
pass this new data frame to the points
function.

the command:

points(c(1, 3), c(2, 4), col=2)

programming: practical 2a solutions 3

plot(dd[sel,]$t, dd[sel,]$m,

ylab=treat, xlab="Time",

main=paste("Treatment", treat))

##Select a particular treament

sel = (dd$trts == treat)

##Calculate the limits

values = dd[sel,]$m

message(mean(values))

upper_lim = mean(values) + sd(values)

lower_lim = mean(values) - sd(values)

##Extract the points

up_row = dd[sel & dd$m > upper_lim,]

low_row = dd[sel & dd$m < lower_lim,]

##pch=19 gives a solid dot

##See ?points

points(up_rowt, up_rowm, col=4, pch=19)

points(low_rowt, low_rowm, col=4, pch=19)

8. Suppose we wanted to save individual graphs. Add in the pdf

function to save the resulting graph. To get unique file names, use
the paste command:

filename = paste("file", treat, ".pdf", sep="")

9. Put your code, i.e. the for loop and plotting commands, in a
function which takes the data frame as an argument.

10. Alter your function to take another argument where you can save
the graph in a different directory.

Final piece of code

viewgraphs = function(dd, colour=TRUE, save=FALSE) {

for(treat in unique(dd$trts)) {

if(save) {

filename = paste("file", treat, ".pdf", sep="")

pdf(filename)

}

##Use a different shape in the points

if(colour) pch = 19

else pch = 22

##Do selection one

sel = (dd$trts == treat)

programming: practical 2a solutions 4

plot(dd[sel,]$t, dd[sel,]$m,

ylab=treat, xlab="Time",

main=paste("Treatment", treat))

##Calculate the limits

values = dd[sel,]$m

message(mean(values))

upper_lim = mean(values) + sd(values)

lower_lim = mean(values) - sd(values)

##Extract the points

up_row = dd[sel & dd$m > upper_lim,]

low_row = dd[sel & dd$m < lower_lim,]

##pch=19 gives a solid dot

##See ?points

points(up_rowt, up_rowm, col=4, pch=19)

points(low_rowt, low_rowm, col=4, pch=19)

if(save){

dev.off()

} else {

readline("Hit return for next plot\n")

}

}

}

Solutions

Solutions are contained within this package:

library("nclRprogramming")

vignette("solutions2a", package="nclRprogramming")

