R/informationDimension.R

Defines functions plotLocalScalingExp.infDim plot.infDim estimate.infDim embeddingDims.infDim logRadius.infDim logRadius fixedMass.infDim fixedMass infDim

Documented in embeddingDims.infDim estimate.infDim fixedMass fixedMass.infDim infDim logRadius logRadius.infDim plot.infDim plotLocalScalingExp.infDim

#' Information dimension
#' @description
#' Functions for estimating the information dimension of a dynamical 
#' system from 1-dimensional time series using Takens' vectors
#' @details 
#' The information dimension is a particular case of the generalized 
#' correlation dimension when setting the order q = 1. It is possible to 
#' demonstrate that the information dimension \eqn{D_1}{D1} may be defined as:
#' \eqn{D_1=lim_{r \rightarrow 0} <\log p(r)>/\log(r)}{D1=lim{r->0} <ln p(r)>/ln(r)}.
#' Here, \eqn{p(r)} is the probability of finding a neighbour in a 
#' neighbourhood of size \eqn{r} and <> is the mean value. Thus, the 
#' information dimension specifies how the average Shannon information scales 
#' with the radius \eqn{r}. The user should compute the information dimension 
#' for different embedding dimensions for checking if \eqn{D_1}{D1} saturates.
#' 
#' In order to estimate \eqn{D_1}{D1}, the algorithm looks for the scaling 
#' behaviour of the the average radius that contains a given portion 
#' (a "fixed-mass") of the total points in the phase space. By performing
#' a linear regression of \eqn{\log(p)\;Vs.\;\log(<r>)}{ln p Vs ln <r>} (being
#' \eqn{p} the fixed-mass of the total points), an estimate of \eqn{D_1}{D1} is
#' obtained. 
#' 
#' The algorithm also introduces a variation of \eqn{p} for achieving a better 
#' performance: for small values of \eqn{p}, all the points in the time 
#' series (\eqn{N}) are considered for obtaining \eqn{p=n/N}. Above a maximum 
#' number of neighbours \eqn{kMax}, the algorithm obtains \eqn{p} by decreasing 
#' the number of points considerd  from the time series  \eqn{M<N}. 
#' Thus \eqn{p = kMax/M}.
#' 
#' Even with these improvements, the calculations for the information 
#' dimension are heavier than those needed for the correlation dimension. 
#' @param time.series The original time series from which the information 
#' dimension will be estimated.
#' @param min.embedding.dim Integer denoting the minimum dimension in which we 
#' shall embed the time.series (see \link{buildTakens}). 
#' @param max.embedding.dim Integer denoting the maximum dimension in which we 
#' shall embed the time.series (see \link{buildTakens}).Thus,
#' we shall estimate the information dimension between \emph{min.embedding.dim} 
#' and \emph{max.embedding.dim}.
#' @param time.lag Integer denoting the number of time steps that will be use 
#' to construct the Takens' vectors (see \code{\link{buildTakens}}).
#' @param min.fixed.mass Minimum percentage of the total points that the 
#' algorithm shall use for the estimation.
#' @param max.fixed.mass Maximum percentage of the total points that the 
#' algorithm shall use for the estimation.
#' @param number.fixed.mass.points The number of different \emph{fixed mass} 
#' fractions between \emph{min.fixed.mass}
#' and \emph{max.fixed.mass} that the algorithm will use for estimation.
#' @param radius Initial radius for searching neighbour points in the phase 
#' space. Ideally, it should be small
#' enough so that the fixed mass contained in this radius is slightly greater 
#' than the \emph{min.fixed.mass}. However, whereas the radius is not too 
#' large (so that the performance decreases) the choice is not critical.
#' @param increasing.radius.factor Numeric value. If no enough neighbours are 
#' found within \emph{radius}, the radius is increased by a factor 
#' \emph{increasing.radius.factor} until succesful. Default: sqrt(2) = 1.414214.
#' @param number.boxes Number of boxes that will be used in the box assisted 
#' algorithm (see \link{neighbourSearch}).
#' @param number.reference.vectors Number of reference points that the routine 
#' will try to use, saving computation time.
#' @param theiler.window Integer denoting the Theiler window:  Two Takens' 
#' vectors must be separated by more than theiler.window time steps in order to 
#' be considered neighbours. By using a Theiler window, we exclude temporally 
#' correlated vectors from our estimations. 
#' @param kMax Maximum number of neighbours used for achieving p with all the 
#' points from the time series (see Details). 
#' @param do.plot Logical value. If TRUE (default value), a plot of the 
#' correlation sum is shown.
#' @param ... Additional graphical parameters.
#' @return A \emph{infDim} object that consist of a list with two components: 
#' \emph{log.radius} and \emph{fixed.mass}. \emph{log.radius} contains
#' the average log10(radius) in which the \emph{fixed.mass} can be found.
#' @references H. Kantz  and T. Schreiber: Nonlinear Time series Analysis 
#' (Cambridge university press)
#' @author Constantino A. Garcia
#' @examples
#' \dontrun{
#' x=henon(n.sample=  3000,n.transient= 100, a = 1.4, b = 0.3, 
#'         start =  c(0.8253681, 0.6955566), do.plot = FALSE)$x
#' 
#' leps = infDim(x,min.embedding.dim=2,max.embedding.dim = 5,
#'               time.lag=1, min.fixed.mass=0.04, max.fixed.mass=0.2,
#'               number.fixed.mass.points=100, radius =0.001, 
#'               increasing.radius.factor = sqrt(2), number.boxes=100, 
#'               number.reference.vectors=100, theiler.window = 10, 
#'               kMax = 100,do.plot=FALSE)
#' 
#' plot(leps,type="l")
#' colors2=c("#999999", "#E69F00", "#56B4E9", "#009E73", 
#'           "#F0E442", "#0072B2", "#D55E00")
#' id.estimation = estimate(leps,do.plot=TRUE,use.embeddings = 3:5,
#'                          fit.lwd=2,fit.col=1,
#'                          col=colors2)
#' cat("Henon---> expected: 1.24    predicted: ", id.estimation ,"\n")
#' }
#' @rdname infDim
#' @export infDim
#' @exportClass infDim
#' @useDynLib nonlinearTseries
#' @seealso \code{\link{corrDim}}.
infDim = function(time.series, min.embedding.dim=2, 
                  max.embedding.dim = min.embedding.dim, time.lag = 1, 
                  min.fixed.mass, max.fixed.mass, 
                  number.fixed.mass.points = 10, radius, 
                  increasing.radius.factor = sqrt(2), number.boxes = NULL,
                  number.reference.vectors=5000, theiler.window = 1,
                  kMax = 1000, do.plot = TRUE, ...) {
  
  if (is.null(number.boxes)) {
    number.boxes = estimateNumberBoxes(
      buildTakens(time.series, max.embedding.dim, time.lag), radius
    )
  } 
  embeddings = min.embedding.dim:max.embedding.dim
  fixed.mass.vector = 10 ^ (seq(log10(min.fixed.mass),
                                log10(max.fixed.mass),
                                length.out = number.fixed.mass.points)
  )
  infDim.matrix  = 
    .Call('_nonlinearTseries_rcpp_information_dimension', 
          PACKAGE = 'nonlinearTseries', 
          time.series, embeddings, time.lag,  fixed.mass.vector,
          radius,  increasing.radius.factor, number.boxes, 
          number.reference.vectors, theiler.window,  kMax)
  
  dimnames(infDim.matrix) = list(embeddings,fixed.mass.vector)
  # Not using the correction of the log(p) suggested by Kantz,
  # the correction is stored in infDim.result$lfp.
  information.dimension.structure = list(fixed.mass = fixed.mass.vector, 
                                         log.radius =  infDim.matrix,
                                         embedding.dims = embeddings)
  class(information.dimension.structure) = "infDim"
  # add attributes
  id = deparse(substitute(time.series))
  attr(information.dimension.structure,"time.lag") = time.lag
  attr(information.dimension.structure,"id") = id
  attr(information.dimension.structure,"theiler.window") = theiler.window
  
  if (do.plot) {
    tryCatch(plot(information.dimension.structure, ...), 
             error = function(error){
               warning("Error while trying to plot the correlation sum")
             })
  }
  
  information.dimension.structure
}

#' fixed mass
#' @param x A \emph{infDim} object.
#' @return A numeric vector representing the fixed mass vector used
#' in the information dimension algorithm represented by the \emph{infDim} 
#' object.
#' @seealso \code{\link{infDim}}
#' @export fixedMass
fixedMass = function(x){
  UseMethod("fixedMass")
}

#' @return The \emph{fixedMass} function returns the fixed mass vector used
#' in the information dimension algorithm.
#' @rdname infDim
#' @export
fixedMass.infDim = function(x){
  x$fixed.mass
}

#' Obtain the the average log(radius) computed
#' on the information dimension algorithm.
#' @param x A \emph{infDim} object.
#' @return A numeric vector representing the average log(radius) computed
#' on the information dimension algorithm represented by the \emph{infDim} 
#' object.
#' @seealso \code{\link{infDim}}
#' @export logRadius
logRadius = function(x){
  UseMethod("logRadius")
}

#' @return The \emph{logRadius} function returns the average log(radius) 
#' computed on the information dimension algorithm.
#' @rdname infDim
#' @export
logRadius.infDim = function(x){
  x$log.radius
}

#' @return The \emph{embeddingDims} function returns the 
#' embeddings in which the information dimension was computed
#' @rdname infDim
#' @export
embeddingDims.infDim = function(x){
  embeddingDims.default(x)
}

#' @return The 'estimate' function estimates the information dimension of the 
#' 'infDim' object by by averaging the slopes of the
#' embedding dimensions specified in the \emph{use.embeddings} parameter. The
#' slopes are determined  by performing a linear regression
#' over the fixed mass' range specified in 'regression.range'. If do.plot is 
#' TRUE, a graphic of the regression over the data is shown.
#' @param x A \emph{infDim} object.
#' @param regression.range Vector with 2 components denoting the range where 
#' the function will perform linear regression.
#' @param use.embeddings A numeric vector specifying which embedding dimensions 
#' should be used to compute the information dimension.
#' @param fit.col A vector of colors to plot the regression lines.
#' @param fit.lty The type of line to plot the regression lines.
#' @param fit.lwd The width of the line for the regression lines.
#' @param lty The line type of the <log10(radius)> functions.
#' @param lwd The line width of the <log10(radius)> functions.
#' @rdname infDim
#' @export
estimate.infDim = function(x, regression.range=NULL, do.plot=TRUE,
                           use.embeddings = NULL,
                           col = NULL, pch = NULL, 
                           fit.col = NULL, fit.lty = 2, fit.lwd = 2, 
                           add.legend = T, lty = 1, lwd = 1, ...) {
  if (is.null(regression.range)) {
    # the first position is always 0
    min.fixed.mass = min(x$fixed.mass) 
    max.fixed.mass = max(x$fixed.mass)
  }else{
    min.fixed.mass = regression.range[[1]]
    max.fixed.mass = regression.range[[2]]
  }
  if (!is.null(use.embeddings)) {
    log.radius = x$log.radius[as.character(use.embeddings),]
  } else {
    use.embeddings = x$embedding.dims
    log.radius = x$log.radius
  }
  
  n.embeddings = length(use.embeddings)
  indx = which(x$fixed.mass >= min.fixed.mass &
                 x$fixed.mass <= max.fixed.mass)
  x.values = log10(x$fixed.mass[indx])
  information.dimension = c()
  if (do.plot) {
    if (add.legend) {
      current.par =  par(no.readonly = TRUE)
      on.exit(par(current.par))
      layout(rbind(1, 2), heights = c(8, 2))
    }
    # eliminate unnecessary embedding dimensions
    reduced.x = x
    reduced.x$log.radius = NULL
    reduced.x$log.radius = log.radius
    reduced.x$embedding.dims = NULL
    reduced.x$embedding.dims = use.embeddings
    # obtain vector of graphical parameters if not specified
    col = vectorizePar(col,n.embeddings)
    pch = vectorizePar(pch,n.embeddings)
    fit.col = vectorizePar(fit.col,n.embeddings,col)
    plot(reduced.x, col = col, pch = pch, lty = lty, lwd = lwd,
         add.legend = F, localScalingExp = F, ...)
  }
  for (i in 1:n.embeddings) {
    y.values = log.radius[as.character(use.embeddings[[i]]), indx]
    reg = lm(y.values ~ x.values)
    information.dimension = c(information.dimension, 1 / reg$coefficients[[2]])
    # plotting
    if (do.plot) {
      lines(x$fixed.mass[indx], reg$fitted.values, col = fit.col[[i]],
            lwd = fit.lwd, lty = fit.lty, ...)
    }  
  }
  if (add.legend && do.plot ) {
    par(mar = c(0, 0, 0, 0))
    plot.new()
    legend("center", "groups", ncol = ceiling(n.embeddings / 2), 
           bty = "n", col = col, lty = rep(1, n.embeddings), pch = pch, 
           lwd = rep(2.5, n.embeddings), 
           legend = use.embeddings, title = "Embedding dimension")
  }  
  
  mean(information.dimension)
}


#' @return The 'plot' function plots the computations performed for the 
#' information dimension estimate:  a graphic of <log10(radius)> Vs fixed mass.
#' Additionally, the inverse of the local scaling exponents can be plotted.
#' @param main A title for the plot.
#' @param xlab A title for the x axis.
#' @param ylab A title for the y axis.
#' @param type Type of plot (see \code{\link[graphics]{plot}}).
#' @param log A character string which contains "x" if the x axis is to be 
#' logarithmic, "y" if the y axis is to be logarithmic and "xy" or "yx" if both
#'  axes are to be logarithmic.
#' @param ylim Numeric vector of length 2, giving the y coordinates range.
#' @param col Vector of colors for each of the dimensions of the plot.
#' @param pch Vector of symbols for each of the dimensions of the plot.
#' @param localScalingExp add a plot of the local information dimension 
#' scaling exponents?
#' @param add.legend add a legend to the plot?
#' @rdname infDim
#' @export
plot.infDim = function(x, main = "Information Dimension", 
                       xlab = "fixed mass (p)", ylab = "<log10(radius)>", 
                       type = "b", log = "x", ylim = NULL, col = NULL,
                       pch = NULL, localScalingExp = T,  add.legend = T, ...) {
  if (add.legend || localScalingExp ) {
    current.par = par(no.readonly = TRUE)
    on.exit(par(current.par))
  }
  if (add.legend && localScalingExp) {
    # 3 regions
    layout(rbind(1, 2, 3), heights = c(4, 4, 2))
  }else{
    if (add.legend) {
      # add legend
      layout(rbind(1, 2), heights = c(8, 2))
    }
    if (localScalingExp) {
      # add local slopes
      layout(rbind(1,2), heights = c(5, 5))
    }
  }
  n.embeddings = length(x$embedding.dims)
  if (is.null(ylim)) {
    ylim = range(x$log.radius)
  }
  col = vectorizePar(col,n.embeddings)
  pch = vectorizePar(pch,n.embeddings)
  
  plot(x$fixed.mass, x$log.radius[as.character(x$embedding.dims[[1]]), ], 
       type = type, log = log, col = col[[1]], pch = pch[[1]], ylim = ylim, 
       xlab = xlab, ylab = ylab, main = main, ... )  
  if (n.embeddings >= 2) {
    for (i in 2:n.embeddings) {
      lines(x$fixed.mass, x$log.radius[as.character(x$embedding.dims[[i]]), ], 
            type = type, col = col[[i]], pch = pch[[i]], ...)
    }
  }
  #local slopes
  if (localScalingExp) {
    plotLocalScalingExp(x, type = type, log = log, col = col, pch = pch,
                        xlab = xlab, add.legend = F, ...)
  }
  if (add.legend) {
    par(mar = c(0, 0, 0, 0))
    plot.new()
    legend("center","groups", ncol = ceiling(n.embeddings / 2), 
           bty = "n", col = col, lty = rep(1, n.embeddings), pch = pch, 
           lwd = rep(2.5, n.embeddings), 
           legend = x$embedding.dims, title = "Embedding dimension")
  }
}

#' @return The \emph{plotLocalScalingExp} function plots the inverse of the 
#' local scaling exponentes of the information dimension 
#' (for reasons of numerical stability).
#' @rdname infDim
#' @export
plotLocalScalingExp.infDim =  function(x, main = "Local scaling exponents d1(p)", 
                                       xlab = "fixed mass p", ylab = "1/d1(p)", 
                                       type = "b", log = "x", ylim = NULL, 
                                       col = NULL, pch = NULL, add.legend=T,
                                       ...) {
  n.embeddings = length(x$embedding.dims)
  if (length(x$fixed.mass) <= 1) {
    stop("Cannot compute local scaling exponents (not enough points in the information dimension matrix)")
  }
  
  if (add.legend) {
    current.par =  par(no.readonly = TRUE)
    on.exit(par(current.par))
    layout(rbind(1, 2), heights = c(8, 2))
  }  
  
  lfm = log10(x$fixed.mass)
  derivative = t(
    apply(x$log.radius, MARGIN = 1, differentiate, h = lfm[[2]] - lfm[[1]])
  )
  fixed.mass.axis = differentiateAxis(x$fixed.mass)
  
  col = vectorizePar(col,n.embeddings)
  pch = vectorizePar(pch,n.embeddings)
  if (is.null(ylim)) {
    ylim = range(derivative)
  }
  plot(fixed.mass.axis, derivative[1, ], type = type, log = log,
       col = col[[1]], pch = pch[[1]], ylim = ylim, xlab = xlab, ylab = ylab, 
       main = main, ...) 
  if (n.embeddings >= 2) {
    for (i in 2:n.embeddings) {
      lines(fixed.mass.axis, derivative[i, ], type = type, col = col[[i]],
            pch = pch[[i]], ...)
    }
  }
  if (add.legend) {
    par(mar = c(0, 0, 0, 0))
    plot.new()
    legend("center", "groups", ncol = ceiling(n.embeddings / 2), 
           bty = "n", col = col, lty = rep(1, n.embeddings), pch = pch, 
           lwd = rep(2.5, n.embeddings), 
           legend = x$embedding.dims, title = "Embedding dimension")
  }
  
}

Try the nonlinearTseries package in your browser

Any scripts or data that you put into this service are public.

nonlinearTseries documentation built on May 2, 2019, 5:47 p.m.