
Working with the DICOM Data Standard in R

Brandon Whitcher
Pfizer Worldwide R&D

Volker J. Schmid
Ludwig-Maximilians Universität München

Andrew Thornton
Cardiff University

Abstract

The package oro.dicom facilitates the interaction with and manipulation of medical
imaging data that conform to the DICOM standard. DICOM data, from a single file or
single directory or directory tree, may be uploaded into R using basic data structures: a
data frame for the header information and a matrix for the image data. A list structure is
used to organize multiple DICOM files. The conversion from DICOM to ANALYZE/NIfTI
is straightforward using the capabilities of oro.dicom and oro.nifti.

Keywords: export, imaging, import, medical, visualization.

1. Introduction

Medical imaging is well established in both the clinical and research areas with numerous
equipment manufacturers supplying a wide variety of modalities. The DICOM (Digital Imag-
ing and Communications in Medicine; http://medical.nema.org) standard was developed
from earlier standards and released in 1993. It is the data format for clinical imaging equip-
ment and a variety of other devices whose complete specification is beyond the scope of this
paper. All major manufacturers of medical imaging equipment (e.g., GE, Siemens, Philips)
have so-called DICOM conformance statements that explicitly state how their hardware im-
plements DICOM. The DICOM standard provides interoperability across hardware, but was
not designed to facilitate efficient data manipulation and image processing. Hence, additional
data formats have been developed over the years to accommodate data analysis and image
processing.

The material presented here provides users with a method of interacting with DICOM files
in R (R Development Core Team 2010). Real-world data sets, that are publicly available,
are used to illustrate the basic functionality of oro.dicom (Whitcher et al. 2011). It should
be noted that the package focuses on functions for data input/output and visualization.
Images in the metadata-rich DICOM format may be converted to NIfTI semi-automatically
using oro.nifti by utilizing as much information from the DICOM files as possible. Basic
visualization functions, similar to those commonly used in the medical imaging community,
are provided for nifti. Additionally, the oro.nifti package allows one to track every operation
on a nifti object in an XML-based audit trail.

The oro.dicom package should appeal not only to R package developers, but also to scientists

http://medical.nema.org

2 DICOM and R

oro.dicom

create3D, create4D Create multi-dimensional arrays from
DICOM header/image lists.

dicom2analyze, dicom2nifti Convert DICOM objects to ANALYZE
or NIfTI objects.

readDICOMFile, readDICOM Read single or multiple DICOM files
into R.

dicomTable, writeHeader Construct data frame from DICOM
header list and write to a CSV file.

extractHeader, header2matrix, matchHeader Extract information from DICOM
headers.

str2date, str2time Convert DICOM date or time entry into
an R object.

Table 1: List of functions available in oro.dicom.

and researchers who want to interrogate medical imaging data using the statistical capabilities
of R without writing and validating their own basic data input/output functionality. Table 1
lists the key functions for oro.dicom and groups them according to common functionality.

2. oro.dicom: DICOM data input/output in R

The DICOM “standard” for data acquired using a clinical imaging device is very broad and
complex. Roughly speaking each DICOM-compliant file is a collection of fields organized
into two two-byte sequences (group,element) that are represented as hexadecimal numbers
and form a tag. The (group,element) combination establishes what type of information is
forthcoming in the file. There is no fixed number of bytes for a DICOM header. The final
(group,element) tag should be the “pixel data” tag (7FE0,0010), such that all subsequent
information is related to the image(s).

All attributes in the DICOM standard require different data types for correct representation.
These are known as value representations (VRs) in DICOM, which may be encoded explicitly
or implicitly. There are 27 explicit VRs defined in the DICOM standard. Detailed explana-
tions of these data types are provided in the Section 6.2 (part 5) of the DICOM standard
(http://medical.nema.org). Internal functions have been written to manipulate each of the
value representations and are beyond the scope of this article. The functions str2date and
str2time are useful for converting from the DICOM Datetime and Time value representations
to R date and time objects, respectively.

2.1. The DICOM header

Accessing the information stored in a single DICOM file is provided using the readDICOMFile
function. The basic structure of a DICOM file is summarized in Figure 1, for both explicit
and implicit value representations. The first two bytes represent the group tag and the second
two bytes represent the element tag, regardless of the type of VR. The third set of two bytes
contains the characters of the VR on which a decision about being implicit or explicit is made.

http://medical.nema.org

Brandon Whitcher, Volker J. Schmid, Andrew Thornton 3

Data element with explicit VR of OB, OF, OW, SQ, UT or UN:

+---+

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |

+----+----+----+----+----+----+----+----+----+----+----+----+

|<Group-->|<Element>|<VR----->|<0x0000->|<Length----------->|<Value->

Data element with explicit VR other than as shown above:

+---------------------------------------+

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |

+----+----+----+----+----+----+----+----+

|<Group-->|<Element>|<VR----->|<Length->|<Value->

Data element with implicit VR:

+---------------------------------------+

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |

+----+----+----+----+----+----+----+----+

|<Group-->|<Element>|<Length----------->|<Value->

Figure 1: Byte ordering for a single (group,element) tag in the DICOM standard. Explicit
VRs store the VR as text characters in two bytes. More information is provided in Section
7, Part 3.5-2009 of the DICOM standard (http://medical.nema.org).

http://medical.nema.org

4 DICOM and R

Explicit VRs of type (OB, OF, OW, SQ, UT, UN) skip bytes six and seven (counting from
zero), convert the next four bytes into an integer length and read length number of objects
from the DICOM file. All other explicit VRs follow a slightly different path where bytes six
and seven (counting from zero) provide an integer length and all remaining bytes are read
in as the value. If the character string in bytes four and five do not correspond to a known
VR (Figure 1), then the (group,element) tag is declared to be implicit, the length is taken
from bytes four through seven and all remaining bytes contribute to the value.

The basic structure of the resulting object is a list with two elements: the DICOM header
(hdr) and the DICOM image (img). The header information is organized in a data frame
with six columns and an unknown number of rows depending on the input parameters.

R> fname <- system.file(file.path("dcm", "Abdo.dcm"), package="oro.dicom")

R> abdo <- readDICOMFile(fname)

R> names(abdo)

[1] "hdr" "img"

R> head(abdo$hdr)

group element name code length

1 0002 0000 GroupLength UL 4

2 0002 0001 FileMetaInformationVersion OB 2

3 0002 0002 MediaStorageSOPClassUID UI 26

4 0002 0003 MediaStorageSOPInstanceUID UI 38

5 0002 0010 TransferSyntaxUID UI 20

6 0002 0012 ImplementationClassUID UI 16

value sequence

1 166

2 \001

3 1.2.840.10008.5.1.4.1.1.4

4 1.3.46.670589.11.0.4.1996082307380007

5 1.2.840.10008.1.2.1

6 1.3.46.670589.17

R> tail(abdo$hdr)

group element name code length value sequence

79 0028 0101 BitsStored US 2 12

80 0028 0102 HighBit US 2 11

81 0028 0103 PixelRepresentation US 2 0

82 0028 1050 WindowCenter DS 4 530

83 0028 1051 WindowWidth DS 4 1052

84 7FE0 0010 PixelData OB 131072 PixelData

The ordering of the rows is identical to the ordering in the original DICOM file. Hence, the first
five tags in the DICOM header of Abdo.dcm are: GroupLength, FileMetaInformationVersion,

Brandon Whitcher, Volker J. Schmid, Andrew Thornton 5

MediaStorageSOPClassUID, MediaStorageSOPInstanceUID and TransferSyntaxUID. The
last five tags in the DICOM header are also shown, with the very last tag indicating the start
of the image data for that file and the number of bytes (131072) involved. When additional
tags in the DICOM header information are queried (via extractHeader)

R> extractHeader(abdo$hdr, "BitsAllocated")

[1] 16

R> extractHeader(abdo$hdr, "Rows")

[1] 256

R> extractHeader(abdo$hdr, "Columns")

[1] 256

it is clear that the data are consistent with the header information in terms of the number of
bytes (256 × 256 × (16/8) = 131072).

The first five columns are taken directly from the DICOM header information (group, element,
code, length and value) or inferred from that information (name). Note, the (group,element)
values are stored as character strings even though they are hexadecimal numbers. All aspects
of the data frame may be interrogated in R in order to extract relevant information from the
DICOM header; e.g., "BitsAllocated" as above. The sequence column is used to keep track
of tags that are embedded in a fixed-length SequenceItems tag or between a SequenceItem-
SequenceDelimitationItem pair.

When multiple DICOM files are located in a single directory, or spread across multiple direc-
tories, one may use the function readDICOM (applied here to the directory hk-40).

R> fname <- system.file("hk-40", package="oro.dicom")

R> data(dicom.dic)

R> hk40 <- readDICOM(fname)

R> unlist(lapply(hk40, length))

hdr img

40 40

The object associated with readDICOM is now a nested set of lists, where the hdr element is
a list of data frames and the img element is a list of matrices. These two lists are associated
in a pairwise sense; i.e., hdr[[1]] is the header information for the image img[[1]]. Default
parameters recursive = TRUE and pixelData = TRUE (which is actually an input parameter
for readDICOMFile) allow the user to search down all possible sub-directories and upload the
image in addition to the header information, respectively. Also, by default all files are treated
as DICOM files unless the exclude parameter is set to the unwanted file extension; e.g.,
exclude = "xml".

The list of DICOM header information across multiple files may be converted to a single data
frame using dicomTable, and written to disc for further analysis; e.g., using write.csv.

6 DICOM and R

R> hk40.info <- dicomTable(hk40$hdr)

R> write.csv(hk40.info, file="hk40_header.csv")

R> sliceloc.col <- which(hk40$hdr[[1]]$name == "SliceLocation")

R> sliceLocation <- as.numeric(hk40.info[, sliceloc.col])

R> head(sliceLocation)

[1] 160.9315 157.8315 154.7315 151.6315 148.5315 145.4315

R> head(diff(sliceLocation))

[1] -3.1 -3.1 -3.1 -3.1 -3.1 -3.1

R> unique(extractHeader(hk40$hdr, "SliceThickness"))

[1] 3.125

The tag SliceLocation is extracted from the DICOM header information (at the first element
in the list) and processed using the diff function, and should agree with the SliceThickness
tag. Single DICOM fields may also be extracted from the list of DICOM header information
that contain attributes that are crucial for further image processing; e.g., extracting relevant
MR sequences or acquisition timings.

R> head(extractHeader(hk40$hdr, "SliceLocation"))

[1] 160.9315 157.8315 154.7315 151.6315 148.5315 145.4315

R> modality <- extractHeader(hk40$hdr, "Modality", numeric=FALSE)

R> head(matchHeader(modality, "mr"))

[1] TRUE TRUE TRUE TRUE TRUE TRUE

R> (seriesTime <- extractHeader(hk40$hdr, "SeriesTime", numeric=FALSE))

[1] "113751.966000" "113751.966000" "113751.966000" "113751.966000"

[5] "113751.966000" "113751.966000" "113751.966000" "113751.966000"

[9] "113751.966000" "113751.966000" "113751.966000" "113751.966000"

[13] "113751.966000" "113751.966000" "113751.966000" "113751.966000"

[17] "113751.966000" "113751.966000" "113751.966000" "113751.966000"

[21] "113751.966000" "113751.966000" "113751.966000" "113751.966000"

[25] "113751.966000" "113751.966000" "113751.966000" "113751.966000"

[29] "113751.966000" "113751.966000" "113751.966000" "113751.966000"

[33] "113751.966000" "113751.966000" "113751.966000" "113751.966000"

[37] "113751.966000" "113751.966000" "113751.966000" "113751.966000"

R> str2time(seriesTime)

Brandon Whitcher, Volker J. Schmid, Andrew Thornton 7

$txt

[1] "11:37:51.96600" "11:37:51.96600" "11:37:51.96600"

[4] "11:37:51.96600" "11:37:51.96600" "11:37:51.96600"

[7] "11:37:51.96600" "11:37:51.96600" "11:37:51.96600"

[10] "11:37:51.96600" "11:37:51.96600" "11:37:51.96600"

[13] "11:37:51.96600" "11:37:51.96600" "11:37:51.96600"

[16] "11:37:51.96600" "11:37:51.96600" "11:37:51.96600"

[19] "11:37:51.96600" "11:37:51.96600" "11:37:51.96600"

[22] "11:37:51.96600" "11:37:51.96600" "11:37:51.96600"

[25] "11:37:51.96600" "11:37:51.96600" "11:37:51.96600"

[28] "11:37:51.96600" "11:37:51.96600" "11:37:51.96600"

[31] "11:37:51.96600" "11:37:51.96600" "11:37:51.96600"

[34] "11:37:51.96600" "11:37:51.96600" "11:37:51.96600"

[37] "11:37:51.96600" "11:37:51.96600" "11:37:51.96600"

[40] "11:37:51.96600"

$time

[1] 41871.97 41871.97 41871.97 41871.97 41871.97 41871.97 41871.97

[8] 41871.97 41871.97 41871.97 41871.97 41871.97 41871.97 41871.97

[15] 41871.97 41871.97 41871.97 41871.97 41871.97 41871.97 41871.97

[22] 41871.97 41871.97 41871.97 41871.97 41871.97 41871.97 41871.97

[29] 41871.97 41871.97 41871.97 41871.97 41871.97 41871.97 41871.97

[36] 41871.97 41871.97 41871.97 41871.97 41871.97

2.2. The DICOM image

Most DICOM files involve a single slice from an acquisition – the image. A notable exception is
the Siemens MOSAIC format (addressed in Section 2.2.1). The oro.dicom package assumes the
image is stored as a flat file of two-byte integers without compression. A variety of additional
image formats are possible within the DICOM standard; e.g., RGB-colorized, JPEG, JPEG
Lossless, JPEG 2000 and run-length encoding (RLE). None of these formats are currently
available in oro.dicom. Going back to the Abdo.dcm example, the image is accessed via

R> image(t(abdo$img), col=grey(0:64/64), axes=FALSE, xlab="", ylab="")

Figure 2 displays a coronal slice through the abdomen from an MRI acquisition. All infor-
mation from the original data acquisition should accompany the image through the DICOM
header, and this information is utilized as much as possible by oro.dicom to simplify the ma-
nipulation of DICOM data. As previously shown, this information is easily available to the
user by matching DICOM header fields with valid strings. Note, the function extractHeader

assumes the output should be coerced via as.numeric but this may be disabled setting the
input parameter numeric=FALSE.

R> extractHeader(abdo$hdr, "Manufacturer", numeric=FALSE)

[1] "Philips"

8 DICOM and R

Figure 2: Coronal slice of the abdomen viewed in neurological convention (left is right and
right is left).

R> extractHeader(abdo$hdr, "RepetitionTime")

[1] 2000

R> extractHeader(abdo$hdr, "EchoTime")

[1] 100

The basic DICOM file structure does not encourage the analysis of multi-dimensional imaging
data (e.g., 3D or 4D) commonly acquired on clinical scanners. Hence, the oro.dicom package
has been developed to access DICOM files and facilitate their conversion to the NIfTI or
ANALYZE formats in R. The conversion process requires the oro.nifti package and will be
outlined in Section 3.

Siemens MOSAIC format

Siemens multi-slice EPI (echo planar imaging) data may be collected as a “mosaic” image;
i.e., all slices acquired in a single TR (repetition time) frame of a dynamic run are stored
in a single DICOM file. The images are stored in an M×N array of images. The function
create3D will try to guess the number of images embedded within the single DICOM file
using the AcquisitionMatrix field. If this doesn’t work, one may enter the (M,N) doublet
explicitly.

Brandon Whitcher, Volker J. Schmid, Andrew Thornton 9

(a) (b)

Figure 3: (a) Single MOSAIC image as read in from readDICOMFile. (b) Lightbox display
of three-dimensional array of images after processing via create3D.

R> fname <- system.file(file.path("dcm", "MR-sonata-3D-as-Tile.dcm"),

+ package="oro.dicom")

R> dcm <- readDICOMFile(fname)

R> dim(dcm$img)

[1] 384 384

R> dcmImage <- create3D(dcm, mosaic=TRUE)

R> dim(dcmImage)

[1] 64 64 36

Figure 3a is taken from the raw DICOM file, in mosaic format, and displayed with the default
margins in R. Figure 3b is displayed after re-organizing the original DICOM file into a three-
dimensional array (it was also converted to the NIfTI format for ease of visualization using
the overloaded image function in oro.nifti).

3. Converting DICOM to NIfTI

The oro.dicom and oro.nifti packages have been specifically designed to use as much infor-
mation as possible from the metadata-rich DICOM format and apply that information in the
construction of the NIfTI data volume. The function dicom2nifti converts a list of DICOM
images into an nifti object, and likewise dicom2analyze converts such a list into an anlz

object.

Historically, data conversion from DICOM to NIfTI (or ANALYZE) has been provided outside
of R using one of several standalone software packages:

10 DICOM and R

• Xmedcon (Nolf 2003),

• FreeSurfer (http://surfer.nmr.mgh.harvard.edu),

• MRIConvert (http://lnci.oregon.edu/~jolinda/MRIConvert).

This is by no means an exhaustive list of software packages available for DICOM conversion.
In addition there are several other R packages with the ability to process DICOM data

• fmri (Polzehl and Tabelow 2007),

• tractor.base (Clayden 2010) (part of the tractor project http://code.google.com/p/

tractor).

3.1. An example using a single-series data set

Using the 40 images from the hk40 object (previously defined in Section 2.1) it is straightfor-
ward to perform DICOM-to-NIfTI conversion using only default settings and plot the results
in either lightbox or orthographic displays.

R> dput(formals(dicom2nifti))

list(dcm = , datatype = 4, units = c("mm", "sec"), rescale = FALSE, reslice = TRUE, qform = TRUE, sform = TRUE, DIM = 3, descrip = "SeriesDescription", aux.file = NULL, ... =)

R> (hk40n <- dicom2nifti(hk40))

NIfTI-1 format

Type : nifti

Data Type : 4 (INT16)

Bits per Pixel : 16

Slice Code : 0 (Unknown)

Intent Code : 0 (None)

Qform Code : 2 (Aligned_Anat)

Sform Code : 2 (Aligned_Anat)

Dimension : 256 x 256 x 40

Pixel Dimension : 1.56 x 1.56 x 3.12

Voxel Units : mm

Time Units : sec

R> image(hk40n)

R> orthographic(hk40n, col.crosshairs="green")

By default dicom2nifti takes all image data from the DICOM list and creates a 3D image.
Four-dimensional image volumes (three in space plus one in time) are also converted automat-
ically by specifying DIM=4, where slice positions are taken from the ImagePositionPatient

DICOM header field. For example, using DIM=4 on the hk40 DICOM data,

R> (hk40n <- dicom2nifti(hk40, DIM=4))

http://surfer.nmr.mgh.harvard.edu
http://lnci.oregon.edu/~jolinda/MRIConvert
http://code.google.com/p/tractor
http://code.google.com/p/tractor

Brandon Whitcher, Volker J. Schmid, Andrew Thornton 11

(a)

(b)

Figure 4: (a) Lightbox display of three-dimensional array of images. (b) Orthographic display
of the same three-dimensional array (using the default settings for orthographic).

12 DICOM and R

NIfTI-1 format

Type : nifti

Data Type : 4 (INT16)

Bits per Pixel : 16

Slice Code : 0 (Unknown)

Intent Code : 0 (None)

Qform Code : 2 (Aligned_Anat)

Sform Code : 2 (Aligned_Anat)

Dimension : 256 x 256 x 40

Pixel Dimension : 1.56 x 1.56 x 3.12

Voxel Units : mm

Time Units : sec

will also produce a three-dimensional volume of images, since the ImagePositionPatient

field is unique for each single slice of the volume.

The functions dicom2nifti and dicom2analyze will fail when the dimensions of the indi-
vidual images in the DICOM list do not match. However, they do not check for different
series numbers or patient IDs so caution should be exercised when scripting automated work
flows for DICOM-to-NIfTI conversion. In cases where a DICOM file includes images from
more than one series, the corresponding slices have to be chosen before conversion, using
dicomTable, extractHeader, and matchHeader.

3.2. An example using a multiple-volume data set

The National Biomedical Imaging Archive (NBIA; http://cabig.nci.nih.gov/tools/NCIA)
is a searchable, national repository integrating in vivo cancer images with clinical and genomic
data. The NBIA provides the scientific community with public access to DICOM images, im-
age markup, annotations, and rich metadata. The multiple MRI sequences processed here
were downloaded from the “RIDER Neuro MRI” collection at http://wiki.nci.nih.gov/

display/CIP/RIDER. A small for loop has been written to operate on a subset of the DI-
COM directory structure, where the SeriesInstanceUID DICOM header field is assumed to
be 100% accurate in series differentiation.

R> subject <- "1086100996"

R> DCM <- readDICOM(subject, verbose=TRUE)

R> seriesInstanceUID <- extractHeader(DCM$hdr, "SeriesInstanceUID", FALSE)

R> for (uid in unique(seriesInstanceUID)) {

+ index <- which(unlist(lapply(DCM$hdr, function(x) uid %in% x$value)))

+ uid.dcm <- list(hdr=DCM$hdr[index], img=DCM$img[index])

+ patientsName <- extractHeader(uid.dcm$hdr, "PatientsName", FALSE)

+ studyDate <- extractHeader(uid.dcm$hdr, "StudyDate", FALSE)

+ seriesDescription <- extractHeader(uid.dcm$hdr, "SeriesDescription", FALSE)

+ fname <- paste(gsub("[^0-9A-Za-z]", "",

+ unique(c(patientsName, studyDate, seriesDescription))),

+ collapse="_")

+ cat("## ", fname, fill=TRUE)

+ if (gsub("[^0-9A-Za-z]", "", unique(seriesDescription)) == "axtensor") {

http://cabig.nci.nih.gov/tools/NCIA
http://wiki.nci.nih.gov/display/CIP/RIDER
http://wiki.nci.nih.gov/display/CIP/RIDER

Brandon Whitcher, Volker J. Schmid, Andrew Thornton 13

+ D <- 4

+ reslice <- FALSE

+ } else {

+ D <- 3

+ reslice <- TRUE

+ }

+ uid.nifti <- dicom2nifti(uid.dcm, DIM=D, reslice=reslice,

+ descrip=c("PatientID", "SeriesDescription"))

+ writeNIfTI(uid.nifti, fname)

+ }

Note, the diffusion tensor imaging (DTI) data axtensor is assumed to be four dimensional
and all other series (the multiple flip-angle acquisitions) are assumed to be three dimensional.
There is always a balance between what information should be pre-specified versus what can
easily be extracted from the DICOM headers or images.

4. Conclusion

Medical image analysis depends on the efficient manipulation and conversion of DICOM data.
The oro.dicom package has been developed to provide the user with a set of functions that
mask as many of the background details as possible while still providing flexible and robust
performance.

The future of medical image analysis in R will benefit from a unified view of the imaging
data standards: DICOM, NIfTI, ANALYZE, AFNI, MINC, etc. The existence of a single
package for handling imaging data formats would facilitate interoperability between the ever
increasing number of R packages devoted to medical image analysis. We do not assume that
the data structures in oro.dicom or oro.nifti are best-suited for this purpose and we welcome
an open discussion around how best to provide this standardization to the end user.

Acknowledgments

The authors would like to thank the National Biomedical Imaging Archive (NBIA), the Na-
tional Cancer Institute (NCI), the National Institute of Health (NIH) and all institutions that
have contributed medical imaging data to the public domain. VS is supported by the German
Research Council (DFG SCHM 2747/1-1).

References

Clayden J (2010). tractor.base: A Package for Reading, Manipulating and Visualising
Magnetic Resonance Images. R package version 1.5.0, URL http://CRAN.R-project.org/

package=tractor.base.

Nolf E (2003). “XMedCon - An Open-source Medical Image Conversion Toolkit.” European
Journal of Nuclear Medicine, 30(Suppl. 2), S246. URL http://xmedcon.sourceforge.

net.

http://CRAN.R-project.org/package=tractor.base
http://CRAN.R-project.org/package=tractor.base
http://xmedcon.sourceforge.net
http://xmedcon.sourceforge.net

14 DICOM and R

Polzehl J, Tabelow K (2007). “fmri: A Package for Analyzing fMRI Data.” RNews, 7(2),
13–17. URL http://www.r-project.org/doc/Rnews/Rnews_2007-2.pdf.

R Development Core Team (2010). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org.

Whitcher B, Schmid VJ, Thornton A (2011). “Working with the DICOM and NIfTI Data Stan-
dards in R.” Journal of Statistical Software, 44(6), 1–28. URL http://www.jstatsoft.

org/v44/i06/.

Affiliation:

Brandon Whitcher
Pfizer Worldwide Research & Development
610 Main Street
Cambridge, MA 02139, United States
E-mail: bwhitcher@gmail.com
URL: http://www.imperial.ac.uk/people/b.whitcher, http://rigorousanalytics.blogspot.
com

Volker J. Schmid
Bioimaging group
Department of Statistics
Ludwig-Maximilians-Universität München
80539 München, Germany
E-mail: volker.schmid@lmu.de
URL: http://volkerschmid.de

Andrew Thornton
Cardiff University School of Medicine
Heath Park
Cardiff CF14 4XN, United Kingdom
E-mail: art27@cantab.net

http://www.r-project.org/doc/Rnews/Rnews_2007-2.pdf
http://www.R-project.org
http://www.R-project.org
http://www.jstatsoft.org/v44/i06/
http://www.jstatsoft.org/v44/i06/
mailto:bwhitcher@gmail.com
http://www.imperial.ac.uk/people/b.whitcher
http://rigorousanalytics.blogspot.com
http://rigorousanalytics.blogspot.com
mailto:volker.schmid@lmu.de
http://volkerschmid.de
mailto:art27@cantab.net

	Introduction
	oro.dicom: DICOM data input/output in R
	The DICOM header
	The DICOM image
	Siemens MOSAIC format

	Converting DICOM to NIfTI
	An example using a single-series data set
	An example using a multiple-volume data set

	Conclusion

