
Phenopix - Exposure extraction

G. Filippa

December 2, 2015

Based on images retrieved from stardot cameras, we defined a suite of func-

tions that perform a simplified OCR procedure to extract Exposure values from

images. Exposure will then be used to calculate camera NDVI following (cit.).

1 Install the phenopix package

The package phenopix is hosted in the r-forge repository and can be installed

via the following command:

> install.packages("phenopix", repos="http://R-Forge.R-project.org")

Note that by running this command you will likely be asked to install the

dependencies, which are available via the usual command:

> install.packages('package.name')

2 The steps

The suite of functions necessary to perform the OCR based Exposure recognition

are:

- getCoords() to isolate the string with exposure which will be used by

OCR

- trainOCR() to get a sample of numbers that work as training sample for

the OCR procedure

- getCoords() to isolate the string with exposure which will be used by

OCR

- getExposure() to apply ROI coordinates to an image of different size

Hidden behind each of the steps there is an image preprocessing which con-

sists in converting each image into black and white reversed image (a binary

1

0-1 matrix) after transforming images in greyscale. Black and whites are re-

verted simply to have text strings written in black, with white background.

This binary-conversion was formerly a separate function of the package (before

v 2.0.2). Now the function is embedded in the other functions so that the user

does not need to create a separate folder with all images converted to binary (a

side effect is that the exposure extraction command is slightly slower now).

Before proceeding further, we load the package.

> library(phenopix)

3 Train OCR process

The first step, the most important one, is the training of the dataset. The

important features that R must be able to recognize are 11: the ten numbers

(0-9) and the capital letter E of Exposure. The function designed to perform

this task is trainOCR(). Thier arguments are image.path, the path to your

images, and nsamples, that decides the maximum number of images to be used

in the training. nsamples is set to 100 but usually 11 to 15 images are enough

to recognize all numbers. This is done by running:

> trainOCR(image.path='RGB/', nsamples=100)

In fig. 1 steps to train one number are illustrated. The function first prints

a full image choosen randomly within the folder. locator() is automatically

called. You must first left-click on topleft and bottomright corner of the crop

you want to choose. In this example cropping points are rpresented by red dots.

It is suggested to include the whole text string in the first crop. Then you

will have to close your locator, based on which is your default graphic device (if

device is X11, you will be able to close locator with any mouse button other than

left, whereas on quarts device you have to press ESC key). After closing locator

the plot in topright panel shows up, i.e. the crop you have identified before.

Here, the plot title remembers you which numbers you still have to identify. In

this example we choose to identify number 2. Crop again around your number

(see red points for reference) and you will get a third crop, gridded in blue to

highlight each pixel (bottomleft plot). You have to crop this last image as close

as possible to topleft and bottomright margin of the choosen number. When

you then close this last locator, the function ask() will ask you which number

you have just identified, type 2 and press enter. A new image is then sampled

from the folder and the procedure starts again from topleft panel if fig. 1. When

2

you will be done with all numbers and letter E, the process will be closed and

the object you assigned to trainOCR() will be a named list described below.

Figure 1: A screenshot of the procedure steps to train OCR function.

> load('south.numbers.RData')

> names(south.numbers)

[1] "E" "0" "1" "2" "3" "4" "5" "6" "7" "8" "9"

> str(south.numbers)

List of 11

$ E: num [1:18, 1:12] 0 0 0 0 0 0 0 0 0 0 ...

$ 0: num [1:18, 1:12] 1 1 0 0 0 0 0 0 0 0 ...

$ 1: num [1:18, 1:10] 1 1 0 0 1 1 1 1 1 1 ...

$ 2: num [1:18, 1:12] 1 1 0 0 1 1 1 1 1 1 ...

$ 3: num [1:18, 1:12] 1 1 0 0 1 1 1 1 1 1 ...

$ 4: num [1:18, 1:12] 1 1 1 1 1 1 1 1 0 0 ...

$ 5: num [1:18, 1:12] 0 0 0 0 0 0 0 0 1 1 ...

$ 6: num [1:18, 1:12] 1 1 1 1 0 0 0 0 0 0 ...

$ 7: num [1:18, 1:12] 0 0 1 1 1 1 1 1 1 1 ...

$ 8: num [1:18, 1:12] 1 1 0 0 0 0 0 0 1 1 ...

$ 9: num [1:18, 1:12] 1 1 0 0 0 0 0 0 0 0 ...

> sapply(south.numbers, class) # a list of matrices

3

E 0 1 2 3 4 5 6

"matrix" "matrix" "matrix" "matrix" "matrix" "matrix" "matrix" "matrix"

7 8 9

"matrix" "matrix" "matrix"

> sapply(south.numbers, nrow) # check number of rows and columns

E 0 1 2 3 4 5 6 7 8 9

18 18 18 18 18 18 18 18 18 18 18

> sapply(south.numbers, ncol) # check number of rows and columns

E 0 1 2 3 4 5 6 7 8 9

12 12 10 12 12 12 12 12 12 12 12

Object is a named list with numbers and Exposure. It consists of 0-1 matri-

ces. It is important to check that all matrices show the same row number, which

means that number height is consistent, whereas it is normal that number 1 for

instance has less columns than other numbers. Most stardot images will show

exactly the number of columns and rows of this example, but it happens that

with images of different size, the number of pixel of the shapes may change.

Next figure shows how topleft and bottomright locator points must be set on

each shape to get the best OCR recognition.

4

Figure 2: Examples of training shapes and the perfect crop locations (red dots)

for each of them.

The named list obtained above (south.numbers) is now ready to enter the

function described in the next section.

4 Extract coordinates of the Exposure string

This is another key point of the OCR procedure. The Exposure string may be

located in different areas of the image. Usually, the text string is on the topleft

corner of the images. Exposure can be on the first line as in Kamuela (fig. 3)

or on the second line (fig. 4). It may be of apporximately 18 pixels height or

5

half sized (fig. 5).

Figure 3: Example image from Kamuela site. Exposure is on the first line.

6

Figure 4: Example image from Niwot Ridge site. Exposure is on the second

line.

7

Figure 5: Example image from Las Majadas site. Text string is smaller than in

the previous examples.

Exposure can shift left and right according to the text size that preceeds

exposure. The exposure number itself can be constituted by 1 to 5 digits and

therefore it is important to define the coordinates of the cropping area with

caution. Keep a reasonable amount of space either on the left and on the right

side of the targeted text string to be sure to include it completely in all images.

Up-downward shifting of the text string, instead, is very unlikely, so crop the

image as close as possible to the text upper and lower margin. The getCoords()

function is again based on locator() and works as follows.

> getCoords(image='RGB/southerngreatplainsIR_2014_01_04_123031.jpg')

It gets in input a complete path to a given target image that you will use to

define the Exposure string position. Explore your images and get a rough idea

of the range of exposures you might get. If your maximum exposure is a four

digit number, then use one of those images to define your target. The figure

below illustrates the steps to recognize coordinates. In the first step you only

click the bottomright corner of the image you want to crop first. Crop to the

right of exposure by some 100 pixels. Then your crop is plotted. Here click on

topleft and bottomright margins. Be sure to include some 30-40 pixels on the

8

left of Exposure and 50-80 pixels on the right. If the Exposure string is aligned

to the left of the image (as in fig. 4) you don’t need extra space on the left.

Titles in the various plots help you (fig. 6).

Figure 6: Steps of the function getCoords(). Red dots represent crop points

used in locator().

5 Extracting the exposure

Now that we have trained the OCR, and extracted target coordinates we are

ready to extract exposure from our set of images. The function getExposure

preforms this task. Arguments to the function are ipath, the path to your binary

converted images, coords, the four coordinates in a named vector, train.data,

the training dataset, date.code, the format of date included in each jpg file,

which is used to extract a POSIX date for each exposure. An additional ar-

gument sample allows to run the function on a limited number of images for

testing purposes. Now let’s see if everything works. With the following code we

run the procedure.

> ## manually set coordinates in this example

> south.coords <- c(x1=4, x2=172, y1=60, y2=81)

> load('south.numbers.RData')

> exposure.south <- getExposure('RGB/', south.coords,

+ south.numbers, 'yyyy_mm_dd_HHMMSS')

9

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

[1] 6

[1] 7

[1] 8

[1] 9

[1] 10

[1] 11

[1] 12

[1] 13

[1] 14

[1] 15

[1] 16

[1] 17

[1] 18

[1] 19

[1] 20

[1] 21

[1] 22

[1] 23

[1] 24

[1] 25

[1] 26

[1] 27

> class(exposure.south)

[1] "data.frame"

> summary(exposure.south)

image exposure

southerngreatplainsIR_2014_01_03_120033.jpg: 1 Min. : 2.0

southerngreatplainsIR_2014_01_04_080031.jpg: 1 1st Qu.: 6.0

southerngreatplainsIR_2014_01_04_083032.jpg: 1 Median : 8.0

southerngreatplainsIR_2014_01_04_090031.jpg: 1 Mean : 138.4

southerngreatplainsIR_2014_01_04_093031.jpg: 1 3rd Qu.: 20.5

10

southerngreatplainsIR_2014_01_04_100032.jpg: 1 Max. :2400.0

(Other) :21

timestamp

Min. :2014-01-03 12:00:00

1st Qu.:2014-01-04 10:45:00

Median :2014-01-04 14:00:00

Mean :2014-01-04 15:48:53

3rd Qu.:2014-01-04 17:15:00

Max. :2014-01-05 11:00:00

The procedure ended up successfully. The printed index indicates that all

27 images sampled in this example were processed, and by visual checking we

were 100% successfull in recognizing exposures. Now we will explore how the

procedure is sensitive to changes in cropping coordinates. In the following ex-

ample we expand the lower margin of the image by 8 pixels. In this way we

will likely include a portion of the image below the text string. This portion

will be, in many cases, a black band in the b/w image, and thereby a source of

problem. We envelope the getExposure() command within a try statement in

case it could fail.

> south.coords2 <- c(x1=4, x2=172, y1=60, y2=89)

> exposure.south2 <- try(getExposure('RGB/', south.coords2,

+ south.numbers, 'yyyy_mm_dd_HHMMSS'))

[1] 1

> class(exposure.south2)

[1] "try-error"

As expected, the procedure stops. Much importance must be given to upper

and lower limits of the cropped image. It is useless to include extra space above

or below the Exposure string. Let’s see what happens if we include too much

space on the right side of the image.

> south.coords3 <- c(x1=4, x2=180, y1=60, y2=81)

> exposure.south3 <- try(getExposure('RGB/', south.coords3,

+ south.numbers, 'yyyy_mm_dd_HHMMSS'))

[1] 1

[1] 2

[1] 3

11

[1] 4

[1] 5

[1] 6

[1] 7

[1] 8

[1] 9

[1] 10

[1] 11

[1] 12

[1] 13

[1] 14

[1] 15

[1] 16

[1] 17

[1] 18

[1] 19

[1] 20

[1] 21

[1] 22

[1] 23

[1] 24

[1] 25

[1] 26

[1] 27

> class(exposure.south3)

[1] "data.frame"

> table(exposure.south$exposure==exposure.south3$exposure)

TRUE

27

Same results as in the first try. This indicates that we can move right as

much as we need without affecting the computation. This is important because

exposure can have up to 4 or 5 digits and we want to be sure to include them

all. Be careful that this is true only if no other text is printed on the right of

the exposure string. So if you have to set up the text string of your stardot

(or camera in general) while programming it, make sure that Exposure be not

followed by any text in the same line or, best, to keep Exposure in a separate,

12

single line. In summary, two rules are important: (1) Keep upper (lower) crops

only few pixels above (below) the Exposure string; (2) Keep enough room on

the right and left of Exposure to be sure to include all digits in the string.

Finally, when a set of images is processed we will likely do not want to

check them all. We will therefore write a simple function that allows to check a

sample of images in a fast way. Basically, a random sample of images is choosen

and for each of them a plot is generated, which puts together the number you

extract with getExposure() and the original string on which the extaction was

performed. This function is not included in the package, so if you want to use

it copy and paste it from this document.

> checkExposure <- function(data, ipath, coords, nsamples, opath) {

+ .plotImage <- function(image, ...) {

+ ncols <- ncol(image)

+ nrows <- nrow(image)

+ suppressWarnings(plot(0,

+ type='n', xlim=c(0, ncols),

+ ylim=c(0, nrows), ...))

+ suppressWarnings(rasterImage(image,

+ xleft=0, ybottom=0, xright=ncols,

+ ytop=nrows, ...))

+ }

+ to.sample <- length(list.files(ipath, full.names=TRUE))

+ the.sample <- sample(to.sample, nsamples)

+ all.jpeg.files.full <- list.files(ipath,

+ full.names=TRUE)[the.sample]

+ all.jpeg.files <- list.files(ipath)[the.sample]

+ data.subset <- data[the.sample,]

+ for (a in 1:length(the.sample)) {

+ jpegname <- paste0(opath, all.jpeg.files[a],'.png')

+ .binaryConvert <- function(img) {

+ grey.image <- 0.2126*img[,,1] +

+ 0.7152*img[,,2] + 0.0722*img[,,3]

+ binary <- round(grey.image, 0)

+ rev.binary <- ifelse(binary==1, 0, 1)

+ return(rev.binary)

+ }

+ image.target <- readJPEG(all.jpeg.files.full[a])

+ image.target <- .binaryConvert(image.target)

13

+ cut.image <- image.target[coords['y1']:coords['y2'],

+ coords['x1']:coords['x2']]

+ cut.image.binary <- round(cut.image)

+ png(jpegname, width=500, height=500)

+ par(mfrow=c(2,1))

+ .plotImage(cut.image.binary)

+ plot(0, type='n')

+ act.value <- data.subset[a,'exposure']

+ text(1,0, act.value, cex=5)

+ dev.off()

+ }

+ }

Arguments are data, the dataframe of exposures you have extracted (exposure.south

in our example); ipath, the path of binary images, coords, the cropping coordi-

nates; nsamples is the number of samples you want to check, opath, an output

folder where to save the generated plots.

6 Summary

A procedure is illustrated, that allows to automatically extract exposure values

from a set of images that display this number as a printed text string. Procedure

was built to work with stardot images, and not tested on other type of images.

However it should be flexible enough to adapt to other image size, text fonts,

etc. The suite of R functions presented here are part of the phenopix package

downloadable from the R forge (r-forge.r-project.org/projects/phenopix/). I

am available for further information, debug, receive and provide suggestions at

gian.filippa@gmail.com

14

