Phenopix: pixel based phenology

G. Filippa, E. Cremonese, M. Migliavacca, A. Richardson,
M. Galvagno, M. Forkel

January 4, 2016

This vignette aims at illustrating specific features of the package phenopix
related to pixel by pixel analysis of an image archive in the context of spatially
explicit phenology. All features are shown based on Torgnon Grassland site
(NW ITALY) belonging to the PHENOCAM network and leaded by ARPA
Valle d’Aosta. Troughout this vignette relative green (ie. green digital number
value relative to the sum of all digital numbers) is defined gee (so called green

chromatic coordinate).

1 System requirements

phenopix requires R (>= 2.15.3) and imports one or more functions from the
following packages:

zoo, plyr, SDMTools, jpeg, stringr (>= 1.0.0), bcp, strucchange,
parallel, foreach, doParallel, iterators, gtools, raster, sp

This vignette was run on:

> library(phenopix)

> sessionInfo()

R version 3.2.2 (2015-08-14)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 14.04.3 LTS

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_GB.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=it_IT.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=it_IT.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=it_IT.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] tools stats graphics grDevices utils datasets methods

[8] base

other attached packages:
[1] zoo_1.7-12 jpeg_0.1-8 phenopix_2.1

loaded via a namespace (and not attached):

[1] Rcpp_0.11.6 lattice_0.20-29 codetools_0.2-14 gtools_3.4.1
[6] foreach_1.4.2 R.methodsS3_1.6.1 grid_3.2.2 plyr_1.8.1

[9] magrittr_1.5 stringi_0.4-1 sp_1.0-16 raster_2.3-40
[13] doParallel_1.0.8 strucchange_1.5-0 R.00_1.18.0 R.utils_1.33.0
[17] sandwich_2.3-2 rgdal_0.9-1 iterators_1.0.7 stringr_1.0.0
[21] bcp_3.0.1 parallel_3.2.2 SDMTools_1.1-221

From the output of sessionInfo you will also notice the phenopix version

I am using.

2 Topics covered

This vignette covers the pixel-by-pixel analysis. other available vignettes include
the base vignette and Camera NDVI extraction (coming soon).
For a general introduction to the package functions, please see the main

vignette by running;:
> library(phenopix)
> vignette ('phenopix')

Since throughout this vignette we often refer to the base vignette, we strongly

recommend to read the latter, first.

3 Why a pixel by pixel analysis

Images of a vegetation canopy are usually analysed on a given region of interest
(ROT). Red green and blue values of the pixels belonging to the ROI are usually
averaged and computed over a season of images, and information on an average

phenological signal is drawn. However, recent literature suggested that pixel by

pixel analysis of a ROI may be a promising tool to evaluate within-individuals
and between-individuals different phenologies in various contexts, i.e. grasslands
(with the possibility to evaluate inter-species diffeences in phenology, spatial
variability, and biodiversity) and forests (inter-species differences, age-related
differences in phenology, intra-individual differences in phenology as related to
e.g. position of leaves on the tree), experimental plots (to see for example the

effects of treatments on a portion of the plot) and so on.

4 Install the package

The package phenopix is hosted in the r-forge repository and can be installed

via the following command:
> install.packages ("phenopix", repos="http://R-Forge.R-project.org")

Note that by running this command you will likely be asked to install the

dependencies, which are available via the usual command:

> install.packages('package.name')

5 Functions overview

Base functions needed for the processing and not covered by this vignette:
- DrawROI() to draw a region of interest in your pictures (see phenopix vi-

gnette)

- updateROI() to apply ROI coordinates to an image of different size (see
phenopix vignette)

Functions discussed in the present vignette:

- splitROI() to split a ROI in subrois for faster computation.
- extractVIs() to extract pixel raw color values and indices
- spatialFilter () to filter the data.
- spatialGreen() to fit a curve to the data and extract thresholds (aka phenophases)
- plotSpatial () to plot results in phenophase maps
- extractParameters() to extract thresholds and curve parameters after the
pixel-based analysis.

- greenClusters() to apply a cluster analysis on extracted phenophases.

6 Prior to the analysis

The spatial analysis consist of extracting green values from each pixel in a region
of interest, filter out data, fit a curve and store results. From the point of vue
of R objects, this implies the building up of very large objects, which is an issue
for R, because it can lead to RAM saturation quite quickly. The first thing a
user must do is compute how many pixels are included into the target region of

interest. Let’s load a sample picture

> setwd('/home/gian/sweave/SPATIAL_VIGNETTE/')

> library(jpeg)

> sample.file <- readJPEG('files/20130630T1000. jpg')
> dim(sample.file)

[1] 428 640 3
> load('files/roi.data.Rdata', verbose=TRUE) ## this ROI has two

Loading objects:

roi.data

> ## subrois one called fg (foreground) and bg (background)
> ## we focus on foreground

> fg.roi <- roi.datal'fg']

> str(fg.roi)

List of 1
$ fg:List of 2

..$ pixels.in.roi:'data.frame': 273920 obs. of 3 variables:

..$ rowpos: num [1:273920] 0.00156 0.00313 0.00469 0.00625 0.00781 ...
..$ colpos: num [1:273920] 0.00156 0.00156 0.00156 0.00156 0.00156 ...

..$ pip : int [1:273920] 0000000000 ...
..$ vertices :List of 2

..% x: num [1:8] 0.0202 0.233 0.4341 0.5895 0.6656 ...

..$ y: num [1:8] 0.33 0.352 0.372 0.383 0.383 ...

Within the relatively complex structure of the roi object what matters is the

number of pixels in the roi which can be accessed by the following command:
> table(fg.roifgpixels.in.roi$pip)

0 1
180321 93599

This is a vector of 0 and 1, where 1 denotes a pixel falling within the ROL.
Hence, now we know that our ROI consists of 93599 pixels. As a rough estimate
consider that extracting VIs on 4000 images on a ROI of 100000 pixels would
produce an R object occupying more than 4.5 Gb space. This is why we rec-
ommend to split the ROI into smaller subROIs of no more than 10000 pixels as

follows:

> splitted.roi <- splitROI(fg.roi, nsplit=10)

> names (splitted.roi)

[1] "roil" "roi2" "roi3" "roi4" ‘"roib" ‘"roi6" '"roi7" "roi8" "roi9"

[10] "roilO"
> sapply(splitted.roi, function(x) length(which(x$pixels.in.roi$pip==1)))

roil roi2 roi3 1ro0i4 1r0i5 1r0i6 1r0i7 1r0i8 r0i9 ro0ill

9359 9369 9359 9359 9359 9359 9359 9359 9369 9368

The number of pixels in each subROI is now convenient, we are ready to run
the analysis on each of the 10 subROIs. Before doing so it is a good idea to
structure various subfolders where objects will be stored (not mandatory, but

suggested):
> structureFolder('files/')

Put all your images in files//IMG/
Put your reference image in files//REF/
Draw your ROI with DrawROI():
set path_img_ref to files//REF/
set path_ROIs to files//ROI/
Then you can extractVIs():
set img.path as files//IMG/
set roi.path as files//R0OI/
set vi.path to files//VI/

Alternatively, assign this function to an object and use named elements of the returned 1li

> for (a in 1:length(splitted.roi)) {

+ roi.data <- splitted.roila]

+ final.name <- pasteO('files/ROI/ROI',a,'/roi.data.Rdata')
+ dir.create(pasteO('files/ROI/ROI',a,'/"'))

+ dir.create(pasteO('files/VI/VI',a,'/"'))

+ save(roi.data, file=final.name)

+ }

The first command takes as argument the path to a folder and creates sub-
folders for the analysis (for more details see the phenopix main vignette). The
for loop renames each subROI and saves it into subfolders, and at the same
time creates parallel subfolders in the VI folder. After running the above code

you will have a number of numbered folders equal to the number of subrois.

7 Extract vegetation indices with extractVIs()

The function extractVIs() is explained in the base vignette of the package
and the reader is referred to it for an explaination of its use. In the pixel-by-
pixel analysis the argument spatial is set to TRUE. In the following code the
function is already embedded in the for loop that allows to extract each of the
10 subROIs in which your ROI is divided.

> img.path <- '/path/to/your/images/'
> roi.paths <- list.files('files/ROI/', full.names=TRUE)
> vi.paths <- list.files('files/VI/', full.names=TRUE)

> for (a in 1:10) {
+ act.roi.path <- pasteO(roi.paths[al, '/')

+

act.vi.path <- pasteO(vi.paths([a], '/')

+ extractVIs(img.path,act.roi.path,

+ vi.path=act.vi.path,

+ begin=NULL, spatial=TRUE,

+ date.code="'yyyy_mm_dd_HHMMSS')
+ }

Be aware that pixel extraction can take as long as hours, depending on your
image size and image sampling setup. At the end of the process in your Vi
subfolder you will have an object called (VI.data.spatial.Rdata). Let’s look

inside it:
> load('files/VI/VI1/VI.data.spatial.Rdata', verbose=TRUE)

Loading objects:
VI.data

> class(VI.data[[1]])

[1] "1list"
> head(names (VI.data[[1]]))

[1] "2013-04-15 12:17:00" "2013-04-15 15:00:00" "2013-04-15 16:00:00"
[4] "2013-04-15 17:00:00" "2013-04-16 10:00:00" "2013-04-16 11:00:00"

> str(VI.data[[1]][[1]1])

'data.frame': 9359 obs. of 3 variables:

$ red : num 169 171 171 172 172 171 171 172 171 171

$ green: num 177 179 181 180 180 179 179 178 179 179

$ blue : num 188 190 191 191 191 190 190 190 190 190 ...

- Within each element of this list is another list with one element for each
time step processed (note the output from names(VI.data[[1]])))

- Within each element of this list is a data.frame with three columns corre-
sponding to the digital number of red green and blue, respectively, and there is
a row for each pixel in the ROL

Quite rarely the user will need to explore contents of the VI.data object,
but it is worth knowing its structure. In the previous sections we used a for
loop to show how all subROIs are processed. From here on we will present new
functions as if they were run on a single subROI. In a final section we will show
how to paste again together the output from each subROIs and hence get an

output for the entire original ROL.

8 Filter the data with function spatialFilter

Next step of the analysis is data filtering. The function responsible for this
task is spatialFilter which in turn calls the function autoFilter which is
explained in the base package, including the meaning and the effects of all
filters. spatialFilter allows to apply the filtering procedure on the VI object

produced before. The usage of the function is as follows:
> args(spatialFilter)

function (spatial.list, filter = c("night", "spline", "max"),
filter.options = NULL, ncores = "all", log.file = NULL)
NULL

The argument spatial.list will be the VI.data object in output from ex-

tractVIs(). The argument filter is exactly as for autoFilter() (see the

base vignette) and controls which filters will be used. filter.options is also
explained in the base vignette. The argument ncores allows the user to set the
number of cores to be used in parallel computation (it is highly recommended
to use parallell computation). The argument log.file allows to write a txt
file to monitor the progress of the processing. If you want to use this option
(which is by default switched off) you can enter a quoted path to a folder (e.g.
’path/to/log/file/’) were a file named ’log.txt’ will be saved and updated
with one row written for each pixel processed (and a percent progress). The fil-
tering process is time consuming. Consider that filtering 10000 pixels of a series
of 5000 images requires about 7 hours on a 4-cores CPU. The object in output
from the filtering process is a multivariate zoo series with daily filtered gcc data
and one column for each pixel. In contrast to the behavior of autoFilter(),
where there is a column in output from each filtering step, spatialFilter ()
returns only data filtered with the last filtering method specified in filter
argument, by default 'max’.

Following the example above, with the large ROI splitted into 10 subROIs,
here will be the code to filter out the data:

> for (a in 1:10) {

+ act.vi.path <- vi.paths/[a]

+ load(pasteO(act.vi.path, '/VI.data.spatial.Rdata'))

+ filtered.tmp <- spatialFilter(VI.data, log.file='/home/gian')
+ save.name <- pasteO(act.vi.path,'/filtered.tmp.Rdata')

+ save(filtered. tmp, file=save.name)

+ }

With this for loop for each subROI we load the VI extracted, we filter them
out and we save the filtering product in the same subfolder. Note that I specified
a path for saving the above mentioned log file, which will be written in my home
folder in order to track the ongoing process. Out of the package I have written a
small Rscript that allows reading the txt file without opening it from an ubuntu
terminal. This function/script is not included in the package but I incude the

code here for convenience.

> all.lines <- readLines('log.txt')
> cat(paste(length(all.lines)-1, 'pixels done\n'))
> cat(paste(all.lines[length(all.lines)], '\n'))

If you save this script in a file named log.R from a console (opened in the

folder where your log.txt is being written) you simply run Rscript log.R. In

this way you can check the progress of your processing.

Let’s now look at the structure of one of those filtered objects (it is a mul-

tivariate zoo time series).
> load(pasteO(vi.paths([1],'/filtered.tmp.Rdata'), verbose=TRUE)

Loading objects:
filtered.tmp

> summary(filtered.tmp[,1])

Index filtered.tmp[, 1]
Min. :2013-04-15 00:00:00 Min. :0.3298
1st Qu.:2013-06-19 00:00:00 1st Qu.:0.3331
Median :2013-08-23 00:00:00 Median :0.3353
Mean :2013-08-23 00:14:56 Mean :0.3455
3rd Qu.:2013-10-27 00:00:00 3rd Qu.:0.3515
Max. :2013-12-31 00:00:00 Max. :0.4000

sampling.vect <- sample(dim(filtered.tmp)[2], 500)

library(zoo)

plot(filtered.tmp[,sampling.vect], plot.type='single', col='grey',
ylab='subROI 1: gcc trajectories of 500 random pixels + roi average')

avg.trajectory <- apply(filtered.tmp,1,mean, na.rm=TRUE)

avg.trajectory <- zoo(avg.trajectory, order.by=index(filtered.tmp))

vV VvV VvV + VvV Vv Vv

lines(avg.trajectory, lwd=3)

0.50
|

0.45
|

0.40
|

0.35
|

subROI 1: gcc trajectories of 500 random pixels + roi average

May Jul Sep Nov Jan

Index

Figure 1: The seasonal trajectory of gcc of 500 random pixels from subROI 1

The plot in fig. 1 shows the seasonal trajectories of gcc for 500 random
pixels in the subROI 1 together with the overall average seasonal trajectory. For
reference, compare them to the filtered trajectory of the ROI-averaged approach

in the base vignette, but remeber this is only one out of 10 subROIs!

9 Fit a curve to the filtered data with function

spatialGreen()

After filtering, pixel gcc seasonal trajectories are ready to be fitted with a

smoothing spline or a double logistic function. Details on fitting options are

10

available in the main vignette. here we illustrate the usage of the function that

performs fittings pixel by pixel, i.e. spatialGreen(). Here is the usage:
> args(spatialGreen)

function (filtered.data, fit, threshold, ncores = "all", log.file = NULL)
NULL

The argument filtered.data will be the object in output from spatial-
Filter) function. The argument fit allows to choose a fitting function; the
argument threshold allows to choose a phenophase method. Arguments ncores
and log.file are as for spatialFilter().

Following our 10 subROIs example the code to fit a smoothing spline to each

pixel and extract phenophases according to the Klosterman method will be the

following:

> ##first we create appropriate folders to store the fitted data

> for (a in 1:10) dir.create(pasteO('files/FITTED/fitted',a), recursive=TRUE)
> ## list and grep all filtered files

> filtered.files <- list.files(vi.paths, full.names=TRUE, recursive=TRUE)
> filtered.files <- filtered.files[grep('filtered.tmp', filtered.files)]

> fitted.paths <- list.files('/files/FITTED/', full.names=TRUE)

> for (a in 1:10) {

+ act.file.to.process <- filtered.files[a]

+ act.fitted.path <- fitted.paths[a]

+ load(act.file.to.process, verbose=TRUE)

+ fitted.tmp <- spatialGreen(filtered.tmp, fit='spline',

+ threshold='klosterman',

+ log.file="'/home/gian')

+ save.name <- pasteO(act.fitted.path,'/fitted.tmp.RData')

+ save(fitted.tmp, file=save.name)

+ 7}

The R object in output from spatialGreen() (in this example, fitted.tmp
is a list with length equal to the number of pixels where each element is an object
of class phenopix that can be handled with the same methods explained in the
base vignette. One would like to see for example the fitted curves for all pixels
and plot them all together. For such analysis we can use the function extract
to extract the fitted values for each pixel. Since fitted.tmp is a list, we will

use a sapply () function as follows:

11

> load('files/FITTED/fitted1/fitted.tmp.RData', verbose=TRUE)
> ## extraction of a matrix (because of sapply)

> fitted.values <- sapply(fitted.tmp, extract, what='fitted')
> ## convert to a zoo object

> fitted.values2 <- zoo(fitted.values,

+ order.by=index (extract (fitted.tmp[[1]], what='fitted')))

> sampling.vect <- sample(dim(filtered.tmp)[2], 500)
> plot(fitted.values2[,sampling.vect], plot.type='single', col='grey',
+ ylab='subROI 1: gcc spline fitting of 500 random pixels')

0.40 0.45
| |

subROI 1: gcc spline fitting of 500 random pixels
0.35
!

100 150 200 250 300 350

Index

Figure 2: The seasonal trajectory of fitted gcc of 500 random pixels from subROI
1

10 Extracting phenophases with extractParame-

ters()

However, looking at hundreds of seasonal trajectories is not so informative.

Much better will be to extract curve parameters, and especially phenophases

12

from all pixels and find a convenient way to show them. A specific function is
designed to extract useful information from each fitted pixel.

extractParameters allows to extract phenophases. Its usage is:
> args(extractParameters)

function (list, update = NULL, ...)
NULL

where 1ist is the object in output from spatialGreen(). The argument
update can be one between ’trs’, 'derivatives’, "klosterman’ and ’gu’ to extract
different phenophases compared to the default phenophases extracted with spa-
tialGreen(), similarly to the update () function described in the base vignette.
Further arguments (currently one) can be defined in the function. For example

let’s extract the default thresholds (klosterman method) from fitted.tmp:
> spatial.phenophases.klosterman <- extractParameters(fitted.tmp)

If you look at the structure of the object spatial.phenophases you'll see
it is a dataframe with a column for each phase (so the number depends on the
phenophase extraction method used) and a last column reporting the RMSE of

the fit. The number of rows is th number of pixels analysed.

> summary (spatial.phenophases.klosterman)

Greenup Maturity Senescence Dormancy
Min. :134.0 Min. :164.0 Min. :197.0 Min. :212.0
1st Qu.:149.0 1st Qu.:219.0 1st Qu.:229.0 1st Qu.:253.0
Median :154.0 Median :225.0 Median :233.0 Median :289.0
Mean :169.2 Mean :219.7 Mean 1236.1 Mean 1279.5
3rd Qu.:170.0 3rd Qu.:229.0 3rd Qu.:239.0 3rd Qu.:291.0
Max. :238.0 Max. :269.0 Max. :299.0 Max. :365.0

RMSE
Min. :0.002245
1st Qu.:0.004144
Median :0.004921
Mean :0.005018
3rd Qu.:0.005762
Max. :0.010310

Note the last column with RMSE, showing how good the fit is on each pixel.

Note also how large can be the range of a given phenophase across all pixels.

13

Next, one may want to use the update function to extract different phenophases
on the same pixels or same method with different options. Here are two exam-

ples:

> spatial.phenophases.trs <- extractParameters(fitted.tmp, update='trs')

> spatial.phenophases.trs2 <- extractParameters(fitted.tmp, update='trs', trs=0.25)

And their comparison:

> plot(spatial.phenophases.trs$sos,

+ spatial.phenophases.trs2$sos,
+ pch=20, xlim=c(150, 210),
+ ylim=c (140, 200),
+ xlab='start of season as doy when 507, GCC is reached',
+ ylab='start of season as doy when 25}, GCC is reached')
o
S 4
- N
2
Q
S 8-
o -
Q
3 o
g a7
[Te]
N
c
[o
< ~ -
= -
)
o
0 o
8 © -
c —
3
©
g g |
‘c —
E .
n o
S

I I I I I I I
150 160 170 180 190 200 210

start of season as doy when 50% GCC is reached

Figure 3: Scatter comparing phenophase trs methods with two different thresh-
olds

The second method applied allows to update the analysis by extracting
phenophases with the ’trs’ method, where beginning and end of the growing

season are defined as the day when gcc reaches the 25% values of its maximum

14

either in the increasing and decreasing part of the curve.

11 Rendering pixel by pixel phenophases in a
phenophase map with plotSpatial

Now let’s render the phenophases extracted for each pixel on a so called phenophase
map. Before doing so, we have to put togeth the results for all rois analysed.

Here is the code:

> dir.create('files/PHENOPHASES/')
> global.phenophases.list <- list()
> for (a in 1:10) {

+ act.fitted.path <- fitted.paths[a]

+ act.number.big <- substr(act.fitted.path,

+ nchar(act.fitted.path)-10,

+ nchar(act.fitted.path)) ## this line requires

+ ## that you don't have numbers

+ ## in last ten characters of your folder path

+ track.number <- as.numeric(gsub("["0-9]", "", act.number.big), "")
+ to.load <- list.files(act.fitted.path, full.names=TRUE)

+ load(to.load, verbose=TRUE)

+ spatial.phenophases.klosterman.tmp <- extractParameters(fitted.tmp)
+ global.phenophases.list[[track.number]] <- spatial.phenophases.klosterman.tmp
+ F

> global.phenophases <- NULL

> for (a in 1:10) {

+ tmp.data.frame <- global.phenophases.list[[a]]

+ global.phenophases <- rbind(global.phenophases, tmp.data.frame)

+ }

There must be special care on how the various subROI objects are binded to-
gether. This is because the file listing within R are ordered in a binary style and
not with increasing numbering, resulting in a mismatch between file listing and
roi numbers. This is why we have to retrieve the number of the roi we are pro-
cessing (with act.number.big and track.number), use this index to build an
orderd list (global.phenophases.list) and then unlist it and bind objects to
get the final global.phenophases dataset. Such dataset is computed by fitting
each pixel with the spline method. Hence, there is no curve parameters behind

such fitting. Conversely, the data.frame global.phenophases.klosterman is

15

the result of extractParameters run after fitting each pixel with the Kloster-
man equation, where to each pixel are associated not only the phenophases, but
also the curve parameters of the fitted equations. Hence here you are the names

of the two data.frames:
> names (global.phenophases)

[1] "Greenup" "Maturity" "Senescence" "Dormancy" "RMSE"
[6] "gSl"

> names (global.phenophases.klosterman)

[1] "Greenup" "Maturity" "Senescence" "Dormancy" "al"

[6] n a2|l llblll Ilb2ll IICII lIBlII
[1 1] IIB2II llmlll Ilm2 n llqlll llq2ll
[16] lIvlll Ilv2l| IIRMSEH

As you see the phenophase names are the same, as we have used the same
phenophase method (i.e. Klosterman) but only the global.phenophases.klosterman
data.frame also containes the curve parameters.

Now we are ready to use the plotSpatial function. Here is the usage:
> args(plotSpatial)

function (data, param, roi.data.path, image.path, probs = c(0.01,
0.99), ...)
NULL

data will be the global.phenophases object created before, param is a
character matching one of names (data), i.e. the parameter that will be plotted.
roi.data.path is the complete path to our full ROI data, image.path will be

the full path to the image we will use as a background. Let’s proceed:

16

> colors <- colorRampPalette(c('blue', 'red', 'yellow'), space='rgb')
> plotSpatial (global.phenophases, param='Greenup',

+ roi.data.path='files/roi.data.Rdata’,

+ image.path='files/20130630T1000. jpg',

+ col=colors(100),

+ axis.args=1list(col.axis='white'),

+ legend.args=1list (text='Greenup (doy)', col='white'))

gh Gfeéndp (doy)

Figure 4: PhenoMap of Greenup phenophase

Note the flexibility to add aditional arguments to customize the legend. For
any additional argument see the help file of fields::image.plot upon which
the code for the legend is built.

Let’s get an overview of all phases extracted in the data.frame global.phenophases.

17

>

>

>

+

+

+ + + V + + + VvV + + + Vv +

colors <- colorRampPalette(c('blue', 'red', 'yellow'), space='rgb')
par (mfrow=c(2,2))
plotSpatial(global.phenophases, param='Greenup', 'files/roi.data.Rdata’,
'files/20130630T1000. jpg', col=colors(100),
axis.args=list(col.axis='white', cex=.8),
legend.args=list (text='Greenup', col='white'), legend.mar=7)
plotSpatial(global.phenophases, param='Maturity', 'files/roi.data.Rdata’,
'files/20130630T1000. jpg', col=colors(100),
axis.args=list(col.axis='white', cex=.8),
legend.args=list (text='Maturity', col='white'), legend.mar=7)
plotSpatial(global.phenophases, param='Senescence', 'files/roi.data.Rdata’,
'files/20130630T1000. jpg', col=colors(100),
axis.args=list(col.axis='white', cex=.8),
legend.args=list (text='Senescence', col='white'), legend.mar=7)
plotSpatial(global.phenophases, param='Dormancy', 'files/roi.data.Rdata’,
'files/20130630T1000. jpg', col=colors(100),
axis.args=list(col.axis='white', cex=.8),

legend.args=1ist (text='Dormancy', col='white'), legend.mar=7)

O Maturity

S cence
psenescence

280

- 2_.69..:

Figure 5: PhenoMap of phenophases extracted with Klosterman method

18

In fig.5 note the adjustment of legend margin (arg legend.mar, which de-
faults to 5.1) to have the labels properly included in the plotting region.

One may want to compute th length of the growing season as defined by
the difference in days between Greenup and Dormancy. This can be done by

simply:

> colors <- colorRampPalette(c('blue', 'red', 'yellow'), space='rgb')
> global.phenophases$gsl <- global.phenophases$Dormancy - global.phenophases$Greenup
> plotSpatial(global.phenophases, param='gsl',

+ roi.data.path="'files/roi.data.Rdata’,

+ image.path="'files/20130630T1000. jpg',

+ col=colors(100),

+ axis.args=list(col.axis='white'),

+ legend.args=1ist (text='Growing season length \n(days)', col='white'))

Growing seasen fengt
: (days)

180

Figure 6: PhenoMap of growing season length (days)

Additionally, one may be interested in checking what is the impact of dif-
ferent curve fitting (spline vs klosterman methods) on the final computation
of a given phenophase. In our case we can compare global.phenophases and

global.phenophases.klosterman as in the following example:

19

> colors <- colorRampPalette(c('blue', 'red', 'yellow'), space='rgb')

> greenup.consistency <- data.frame(

+ difference=global.phenophases$Greenup-global.phenophases.klosterman$Greenup
)

plotSpatial (greenup.consistency, param='difference',
roi.data.path='files/roi.data.Rdata’,
image.path='files/20130630T1000. jpg',
col=colors(100),

axis.args=list(col.axis='white'),

+ + + 4+ + VvV o+

legend.args=list (text='Difference (days)', col='white'))

P "Difference . days
I (eoy)

Figure 7: Comparison between two different methods (spline vs Klosterman)

for phenophase extraction

There is no evidence of spatially distributed bias between the two methods,
however the overall range of the difference is +60 -40, which is quite a lot. But

if we look at the summary of the differences:
> summary (greenup.consistency)
difference

Min. :—85.0000

20

1st Qu.: -9.0000
Median : -4.0000

Mean : 0.1383
3rd Qu.: 6.0000
Max. :102.0000
NA's 12631

we see that 50% of pixels show a difference no higher than 10 days.
To complete, let’s see the distribution of Maturity according to klosterman

fitting method. We will use it later on.

21

colors <- colorRampPalette(c('blue', 'red', 'yellow'), space='rgb')
na.pc <- length(
which(
is.na(
global.phenophases.klosterman$Maturity)))/length(
global.phenophases.klosterman$Maturity)*100

vV + + + + VvV Vv

round (na.pc)
[11 3

> plotSpatial(global.phenophases.klosterman, param='Maturity',
+ roi.data.path="'files/roi.data.Rdata’,

+ image.path="'files/20130630T1000. jpg"',

+ col=colors(100),

+ axis.args=list(col.axis='white'),

+

legend.args=1ist (text='Greenup (doy)', col='white'))

Greenup (dz%g

230

70203

Figure 8: PhenoMap of Maturity phenophase after Klosterman curve fitting

Note that we also calculated the percentage of unfitted pixels with the

klosterman fitting appraach, which is 3% in this case. It is normal to have

22

a certain number of pixels which cannot be fitted by double logistic functions.
Actually, 3% is a small number that can be much greater with more noisy signals
or different ecosystems. So, the suggestion is: in case of many unfitted pixels
use the spline appoach, much faster and with no evidence of bias compared to

double logistic fittings.

12 Pushing forward the analysis: cluster analy-
sis

The phenophase maps provide useful information to evaluate spatial patterns of
phenology within an image scene. The next step that we propose is to simplify
the signal of the phenophase maps by grouping pixels according to the extracted
phenophases. The function greenClusters allows to perform scaled k-means
clustering on an input data.frame, that can be either the complete phenopase

dataset or a selection of them. Here is the usage of the function:
> args(greenClusters)

function (data.clusters, data.curve = NULL, nclusters, formula = NULL,
plot = TRUE)
NULL

Argument data.clusters must be a data.frame containing one or more
variables (normally phenophases) upon which the clustering will be performed.
data.curve is an optional data.frame of curve parameters that, if provided, is
used to generate average curves for each of the cluster. We can plot results of
the cluster analysis as we did with the phenophase maps. For this example, we
will use as input matrix phenophases Greenup and Maturity since they show
the more interesting spatial patterns. Here is the the code to perform a cluster

analysis fixing the number of clusters to 4:

> cluster.data <- greenClusters(global.phenophases[,1:2], nclusters=4)

> str(cluster.data)

List of 3
$ curves : logi NA
$ napos : int(0)
$ clusters:'data.frame': 93599 obs. of 1 variable:

..$ clusters: int [1:93599] 3332221111

23

If we look at the structure of the object cluster.data it is a list of three ele-
ments. The first curves is empty for the moment. napos is empty because there
are no NA in the global.phenophases data.frame. clusters is the data.frame
with a single column containing an integer vector 1l:nclusters long npixels which

assigns each pixel to a cluster. And this is what we will plot:

> colors <- palette()[1:4]

> plotSpatial (cluster.data$clusters, param='clusters’,
+ roi.data.path='files/roi.data.Rdata’,

+ image.path='files/20130630T1000. jpg',

+ col=colors,

+ axis.args=list(col.axis='white'),

+

legend.args=list(text='Clusters', col='white'))

gl "":C':'Iuét.er% 0

Figure 9: An example of cluster analysis

How can we evaluate if the number of clusters is enough, or is excessive? A
number of functions can do taht in R. However to my knowledge none of them
can handle a huge dataset as those in output from the spatial analysis. Therefore
what we can suggest is to explore the distribution of pixels on different clusters,

as below:

24

> round(table(cluster.data$clusters)/length(cluster.data$clusters$clusters)*100)

1 2 3 4
19 33 26 22

> cluster.data3 <- greenClusters(global.phenophases[,1:2], nclusters=3)
> round(table(cluster.data3$clusters)/length(cluster.data$clusters$clusters)*100)

1 2 3
24 19 57

> cluster.data2 <- greenClusters(global.phenophases[,1:2], nclusters=2)
> round(table(cluster.data2$clusters)/length(cluster.data$clusters$clusters)*100)

1 2
256 75

> cluster.datab <- greenClusters(global.phenophases[,1:2], nclusters=5)
> round(table(cluster.data5$%clusters)/length(cluster.data$clusters$clusters)*100)

1 2 3 4 5
31 2222 7 16

With a high number of clusters, one cluster group may be strongly under-
represented compared to other clusters, an indication that one cluster might be
removed. For example with 5 clusters, only three clusters are highly represented,

suggesting that 5 clusters are too much. Let’s look at those clusters plotted.

25

>

>

>

+

+

+ + + V + + + VvV + + + Vv +

colors <- colorRampPalette(c('blue', 'red', 'yellow'), space='rgb')
par (mfrow=c(2,2))
plotSpatial (cluster.datab$clusters, param='clusters', 'files/roi.data.Rdata’,
'files/20130630T1000. jpg', col=palette()[1:5],
axis.args=list(col.axis='white', cex=.8),
legend.args=list (text='5 clusters', col='white'), legend.mar=7)
plotSpatial(cluster.data$clusters, param='clusters', 'files/roi.data.Rdata’,
'files/20130630T1000. jpg', col=palette()[1:4],
axis.args=list(col.axis='white', cex=.8),
legend.args=list (text='4 clusters', col='white'), legend.mar=7)
plotSpatial(cluster.data3$clusters, param='clusters', 'files/roi.data.Rdata’,
'files/20130630T1000. jpg', col=palette()[1:3],
axis.args=list(col.axis='white', cex=.8),
legend.args=list (text='3 clusters', col='white'), legend.mar=7)
plotSpatial (cluster.data2$clusters, param='clusters', 'files/roi.data.Rdata’,
'files/20130630T1000. jpg', col=palette()[1:2],
axis.args=list(col.axis='white', cex=.8),

legend.args=1ist(text='2 clusters', col='white'), legend.mar=7)

%fuﬁnﬁACM§q§

3.5
309
2.5
2.0
15
1.0

g ép'_':‘is elasters |

25 i

L
208 F
1.5

1.0

Figure 10: Cluster analysis with different number of clusters

26

The visual assessment confirms that 5 clusters may be too much. On the
other side, with two clusters there is a large loss of information. We will try to go
on with 3 clusters. An interesting question would be to look at an "average be-
havior” of each of those clusters. This can be done by exploiting other arguments
of the function greenClusters. In particular if we supply the data.curve ar-
gument, average curve parameters are computed for each cluster and a fitted
trajectory for them is extracted. To extract fitted trajectories from a set of
parameters we must first tell R which formula was used to fit the original curve.
We therefore source a processed time series stored as an example in the package
(bartlett2009.processed) which was fitted with the klosterman method, as
in our case. From this fit we retrieve the formula, which must eb given as third

argument to greenClusters. Here is the code:

data(bartlett2009.processed)
klosterman.formula <- bartlett2009.processedfitfit$formula

data.curve=global.phenophases.klosterman[,5:17],

>
>
> cluster.data.params <- greenClusters(global.phenophases[,1:2],
+
+ nclusters=3, formula=klosterman.formula,

+

plot=FALSE)

v

str(cluster.data.params)

List of 3
$ curves :8AYzo00aAZ series from 1 to 365
Data: num [1:365, 1:3] 0.323 0.323 0.322 0.322 0.322 ...
..— attr(*, "dimnames")=List of 2
..$: NULL
..$: chr [1:3] "clusterl" "cluster2" "cluster3"
Index: int [1:365] 1 234567 89 10 ...
$ napos : int(0)
$ clusters:'data.frame': 93599 obs. of 1 variable:

..$ clusters: int [1:93599] 3333332222 ...

Note the difference in the structure of cluster.data.params compared to
the previous cluster.data. Now we have the element curves filled with a zoo
series, the average seasonal trajectory of gcc for each of the clusters. They can

be of course plotted:

27

> colors <- palette()[1:3]

> plot(cluster.data.params$curves, plot.type='single', col=colors)

Ty}
Q:_
o

3
o
£ S
3 ©
&
[}
£
<
Y
<
2
8
©
T 8
o ©
g
[%2]
=)
[S]
o
OQ_
(=]

0 100 200 300

Index

Figure 11: Average curves for each of the 3 clusters analysed

Looking at this time series one can argue that the three clusters have strong
different phenology. That’s good news. However making an average of all curve
parameters belonging to the same cluster is a very rough method (tought very
fast) to evaluate the differences between clusters. A more formal approach would
be to use the four cluster groups to subset pixels right after the VI filtering, and
process them as if they would belong to the same region of interest. Easier to
show it than to explain it. First we must remeber that our filtered data are
still splitted over the 10 subROIS. First thing is then to group them with the

following:

> filtered.list <- list()
> for (a in 1:length(filtered.files)) {

+ act.filtered.path <- vi.paths[a]

+ act.number.big <- substr(act.filtered.path,

+ nchar(act.filtered.path)-10,

+ nchar(act.filtered.path)) ## this line requires that you don't have numb

28

+ ## in last ten characters of your folder path

+ track.number <- as.numeric(gsub("["0-9]", "", act.number.big), "")
+ load(pasteO(act.filtered.path, '/filtered.tmp.Rdata'), verbose=TRUE)
+ filtered.list[[track.number]] <- filtered.tmp

+ }

> library(zoo)

> global.filtered.data <- zoo(order.by=index(filtered.list[[1]]))

> for (a in 1:10) {

+ tmp.df <- filtered.list[[a]]

+ global.filtered.data <- cbind(global.filtered.data, tmp.df)

+ print(a)

+ }

Now, global.filtered.data is a huge zoo series occupying 140Mb in my

folder, which dimensions are:

> dim(global.filtered.data)

[1] 261 93599

which means we have a time index and one column for each processed pixel.

It is fairly unsafe to load and handle such a large object in R, but however it

seems to work

cluster.data

. Now we simply have to use the vector of clusters contained in

.params$clusters to subset and average out our large zoo series.

One way to do that is the following:

cll.pos
cl2.pos
cl3.pos
avg.clil
avg.cl2
avg.cl3

+ VvV vV VvV VvV Vv Vv Vv

<_

or

which(cluster.data.params$clusters$clusters==1)
which(cluster.data.params$clusters$clusters==2)
which(cluster.data.params$clusters$clusters==3)
apply(global.filtered.data[,cl1.pos], 1, 'mean')
apply(global.filtered.datal,cl2.pos], 1, 'mean')
apply(global.filtered.datal,c13.pos], 1, 'mean')

avg.clusters <- zoo(cbind(avg.cll, avg.cl2, avg.cl3),

der.by=index(global.filtered.data))

Now let’s plot them:

29

> colors <- palette()[1:3]
> plot(avg.clusters, plot.type='single', col=colors)
> legend('topright', col=colors, legend=paste('cluster', 1:3), 1ty=1, bty='n')

— cluster 1
N _
g cluster 2
=} —— cluster 3
o
<l: —
o

avg.clusters
0.36 0.38
| |

0.34
|

May Jul Sep Nov Jan

Index

Figure 12: TRUE Average curves for each of the 3 clusters analysed

And then fit them as if they were extracted from the ROI-averaged approach

(see the base vignette for explainations)

30

> fitl <- greenProcess(avg.clusters[,1], 'spline', 'gu', plot=FALSE)
> fit2 <- greenProcess(avg.clusters[,2], 'spline', 'gu', plot=FALSE)
> fit3 <- greenProcess(avg.clusters[,3], 'spline', 'gu', plot=FALSE)
> par(mfrow=c(3,1), oma=c(5,4,4,2), mar=rep(.5,4))

> plot(fitted(fit1))

> abline(v=extract(fitl, 'metrics')[1:4])

> plot(fitted(fit2))

> abline(v=extract (fit2, 'metrics')[1:4])

> plot(fitted(£it3))

>

abline (v=extract (fit3, 'metrics')[1:4])

|
|

042 0.34 036 0.38 0.40 0.42

T
100 15p)D‘—\ 250 300 350

0.38
1 1

E
|

100 150 2 250 300 350

0.38 0.42
1 1 1 1

0.34
1

100 150 200 250 300 350

Figure 13: Fitted curves and extracted thresholds in the three ROIs defined

with the cluster analysis, from top to bottom, cluster 1, 2 and 3

The more formal approach shows markedly different trajectories, considering
that we are looking at a 10square meters area in an alpine homogeneous grass-
land! The differences shown here are tightly coupled to the species distribution
on the ROI, with a mosaic of early and late developing species occurring at a

very short distance.

31

We lastly show a further analysis conducted on a subalpine larch stand shown

in the following figure.

> PrintROI('files/20121004T1400. jpg', 'files/data2load/')

— late
—— medium
— early
—— evergreen

Figure 14: ROIs extracted at the Torgnon Larch site

At this site 4 rois were analysed separately, one evergreen tree which will
not be show later and three groups of larch trees showing a markedly different
autumn phenology. These rois were spatially processed separately and then

merged together in a named list as follows:

> all.spatial <- list(early=early.spatial, late=late.spatial,

+ medium=medium.spatial)

This list of spatial phenophases can be plotted in the same figure with
plotSpatial as follows:

32

> colors <- colorRampPalette(c('blue', 'red', 'yellow'), space='rgb')
> plotSpatial(all.spatial, param='DD’,

+ roi.data.path="'files/data2load/roi.data.Rdata’,
image.path="'files/20121004T1400. jpg’,

col=colors(100),

axis.args=1list(col.axis='blue'),

legend.args=1list (text='Downturn date (doy)', col='blue'),
probs=c(0.05, 0.99))

+ + + + +

Downturn date (do
545

Figure 15: PhenoMap of Downturn date (beginning of senescence) in the

Torgnon larch stand

Spatially explicit phenophases show different patterns of autumn phenology
across the selected individuals of larch trees.

13 Summary

In this vignette we showed how to perform a spatially explicit pixel-based anal-
ysis using the phenopix R package. First, the region of interest is splitted to

ensure the creation of objects of an appropriate size that R can handle. Second,

33

data are filtered, fitted and phenophases are extracted for each pixel. Then,
phenophases maps are produced and overplotted to a given reference image.
Fourth, cluster analysis can be conducted on the extracted phenophases or curve
parameters and pixel data can be re-processed according to the clustering.
The R package phenopix is available at the R forge site and directily within

R by running the command:
> install.packages ("phenopix", repos="http://R-Forge.R-project.org")

It is under constant maintainance by Gianluca Filippa and co-authors. Feel free
to write me in case of any problem with the package.

email: gian.filippa@gmail.com

14 References

14.1 General background to digital image analysis

Richardson, A.D., Braswell, B.H., Hollinger, D.Y., Jenkins, J.P., Ollinger, S.V.,
2009. Near-surface remote sensing of spatial and temporal variation in canopy

phenology. Ecological Applications 19, 1417-28.

Sonnentag, O., Hufkens, K., Teshera-Sterne, C., Young, A.M., Friedl, M.,
Braswell, B.H., Milliman, T., OKeefe, J., Richardson, A.D., 2012. Digital re-
peat photography for phenological research in forest ecosystems. Agricultural
and Forest Meteorology 152, 159-177.

Wingate, L., Ogee, J., Cremonese, E., Filippa, G., Mizunuma, T., Migli-
avacca, M., Moisy, C., Wilkinson, M., Moureaux, C., Wohlfahrt, G., Hammerle,
A., Hortnagl, L., Gimeno, C., Porcar-Castell, A., Galvagno, M., Nakaji, T.,
Morison, J., Kolle, O., Knohl, A., Kutsch, W., Kolari, P., Nikinmaa, E., Ibrom,
A., Gielen, B., Eugster, W., Balzarolo, M., Papale, D., Klumpp, K., Kostner, B.,
Grunwald, T., Joffre, R., Ourcival, J.M., Hellstrom, M., Lindroth, A., Charles,
G., Longdoz, B., Genty, B., Levula, J., Heinesch, B., Sprintsin, M., Yakir, D.,
Manise, T., Guyon, D., Ahrends, H., Plaza-Aguilar, A.,; Guan, J.H., Grace, J.,
2015. Interpreting canopy development and physiology using the EUROPhen

camera network at flux sites. Biogeosciences Discussions 12, 7979-8034.

34

14.2 Curve fitting and filtering

Forkel, M., Migliavacca, M., Thonicke, K., Reichstein, M., Schaphoff, S., We-
ber, U., Carvalhais, N., 2015. Codominant water control on global interannual
variability and trends in land surface phenology and greenness. Global Change
Biology 21, 3414-3435.

Gu L, Post WM, Baldocchi D, Black TA, Suyker AE, Verma SB, Vesala T,
Wofsy SC. (2009) Characterizing the Seasonal Dynamics of Plant Community
Photosynthesis Across a Range of Vegetation Types. In: Phenology of Ecosys-
tem Processes (Ed: Noormets A, Springer New York), pp 35-58.

Klosterman ST, Hufkens K, Gray JM, Melaas E, Sonnentag O, Lavine I,
Mitchell L, Norman R, Friedl MA, Richardson A D (2014) Evaluating remote
sensing of deciduous forest phenology at multiple spatial scales using PhenoCam
imagery, Biogeosciences, 11, 4305-4320, doi:10.5194/bg-11-4305-2014.

Migliavacca M., Galvagno M., Cremonese E., Rossini M., Meroni M., Cogliati
S., Manca G., Diotri F., Busetto L., Colombo R., Fava F., Pari E., Siniscalco
C., Morra di Cella U., Richardson A.D. (2011) Using digital repeat photogra-
phy and eddy covariance data to model grassland phenology and photosynthetic
CO2 uptake. Agricultural and forest meteorology 151:1325-1337.

Papale D, Reichstein M, Aubinet M et al. (2006) Towards a standardized
processing of Net Ecosystem Exchange measured with eddy covariance tech-

nique: algorithms and uncertainty estimation. Biogeosciences, 3, 571-583.

Sonnentag O., Hufkens K., Teshera-Sterne C., Young A.M., Friedl M., Braswell
B.H., Milliman T., O’Keefe J., Richardson A.D. (2012) Digital repeat photog-
raphy for phenological research in forest ecosystems. Agricultural and forest
meteorology 152:159-177.

Zhang X, Friedl MA, Schaaf CB, Strahler AH, Hodges JCF, Gao F, Reed

BC, Huete A (2003) Monitoring vegetation phenology using MODIS, Remote
Sens. Environ., 84, 471-475.

35

