A version of the logarithmic transformation
that accommodates zeros

Werner A. Stahel, ETH Zurich

October 15, 2025

Abstract

The log transformation plays an important role in displaying and analyzing statistical data from
non-negative variables. In practice, such variables will often include zero values, either when this
is a genuinly acceptable value or because of technical limitations measuring or documenting tiny
values. Since the logarithm of zero is minus infinity, a modification is needed to determine a finite
value for the transformed zero.

The package plgraphics includes the function logst that implements such a modification.
A short documentation is given in its help documentation.

1 Rationale for logst

When asking for a log transform of data, the difficulty of transfoming zeros pops up. A popular
suggestion ask for just adding a constant to all values, a rule that has been named ”started logs”
by John Tukey. The constant is often chosen as 1, regardless of the data. This recipe has serious
drawbacks.

a. If the constant does not depend on the data, the unit of measurements has a unwarranted effect
of the outcome: if the data consists of lengths, the effect of the started log transformation is different
when they are measured in inches or millimeters—or even meters. Adding one meter to lengths that
are shorter makes the started log transformation essentially linear and therefore ineffective for its usual
purpose.

a*.

Thus, the constant should depend on the data. The first idea is to take the minimum value of
the data. This seems to be too random in most contexts. Therefore, the whole data sample should be

used to determine the constant.

a**. The ’logst’ function identifies, for lognormal data, 2 percent of the data as small (unless modified
by setting the argument 'mult’). Thus the threshold is cx = ¢1/(¢3/ql), where ¢l and ¢3 are the
quartiles of the nonzero values in the sample.

b. The rules for logarithms will no longer hold even for data that is far from zero and thus no problem
for a plain log transformation. That is: logmod(z * y)! = logmod(x) + logmod(y). It is preferable to

transform the bulk of the nonzero data by the simple log transformation and only define a modification
for zero (and tiny) values.

b*. Formally, the log of zero is minus infinity. Any type of ’starting’ the log transformation will bring
it near the transformed values of ’tiny’ data values, as described by a** above.

b**. The logst function continues the curve representing the log transform below cx linearly with
its derivative at this point, see the graph of logst in the figure below. Explicitly, the values below cx
are transformed to logl0(cx) 4 (x — cx) /(cx*log(10)), and those larger than the threshold, to log10(z).

dd <- c(seq(0,1,0.1),5%10"rnorm(100,0,0.2))
dd <- sort(dd)

r.dl <- logst(dd)

attr(r.dl, "threshold")

[1] 1.95

cbind(data=dd, logst=r.dl, loglO=logl0(dd)) [1:20,]

#i# data logst loglO
[1,] 0.00 -0.1438 -Inf
[2,] 0.10 -0.1216 -1.0000
[3,] 0.20 -0.0993 -0.6990
[4,] 0.30 -0.0771 -0.5229
[5,] 0.40 -0.0548 -0.3979
[6,] 0.50 -0.0326 -0.3010
[7,] 0.60 -0.0103 -0.2218
[8,] 0.70 0.0119 -0.1549
[9,] 0.80 0.0342 -0.0969
[10,] 0.90 0.0564 -0.0458
[11,] 1.00 0.0787 0.0000
[12,] 1.64 0.2203 0.2140
[13,] 1.96 0.2917 0.2917
[14,] 2.18 0.3377 0.3377
[15,] 2.41 0.3812 0.3812
[16,] 2.54 0.4046 0.4046
[17,] 2.61 0.4170 0.4170
[18,] 2.81 0.4492 0.4492
[19,] 2.82 0.4508 0.4508
[20,] 2.94 0.4679 0.4679

logst and logl0 coincide for data values

plot(dd, r.dl, type="1")
abline(v=attr(r.dl,"threshold"),lty=2)

plpoints(8,0.4, plab="loglO", csize=2)
text(0.5,0.5, "linear", cex=2, srt=90)

1.0

r.dl

0.5

0.0
|

dd

Why logl0? The function uses logl0 rather than log because this makes transformations and back-
transformations in the mind much easier: If I learn the the transformed value is between 2 and 3, then

I know that the original value was in the hundreds. A more precise value is easily given by the first
decimal of the log value, since logl0(2) ~ 0.3, and therefore, logl10(5) = log(10/2) =1 —0.3 = 0.7,
and so on. This leads to concluding that the original value to a transformed value of 1.7 is 50, since
log10(50) = log10(10) + log10(5) = 1.7.

Keeping the threshold constant. As we have argued, the threshold should depend upon the data.
This would lead to a disadvantage when several samples are examined, since they would be treated
with different transformations. In such a case, it may be appropriate to determine a common threshold
and apply it to all the samples.

In the following example, we use the data of the target variable tremor in the first 3 locations to
apply logst and obtain their threshold, and then get the data for the forth location, for which this
same threshold should be applied.

example showing the effect of fixing the threshold
data(d.blast)

first 3 locations
dd <- d.blast[as.numeric(d.blast$location)<=3,]
y13 <- logst(dd$tremor)
plyx(y13~as.numeric(dd$location), data=dd,
x1lim=c(0,5), ylim=c(-0.2,NA), xlab="location", ylab="lg(tremor)")

forth location
tremor4 <- d.blast$tremor[d.blast$location=="1oc4"]

transform tremor of location 4 alone

y4raw <- logst (tremor4)

plpoints(rep(4.3,47), y4raw, col="red")

abline(h=loglO(attr(y4raw, "threshold")), 1lty=3, col="red")

transform tremor of location 4 using threhold from locations 1-3
y4 <- logst(tremor4, threshold=attr(yl3, "threshold"))
plpoints(rep(4,47), y4, col="blue")

abline(h=logl0(attr(y1l3, "threshold")), 1lty=3, col="blue")

dd

_ ! I
8 8
o]
| 8 :
o _| 8 -] 8
— °
B 8 :
5 ° ; P
2 : % :
g - g : i -
= 8
> i ! ! g 8
8) g (o
7] g 88
3 i g 8
4 & | l g g
o)
o 0
o _ ! 8 3
o)i g .
[I [I S
0 1 2 3 4 5

location

The red points result for applying logst without setting the threshold. The points below the dotted
line remain the logl0 values even though they fall into the linear part of the appropriate transfor-
mation. It is easy to construct more drastic effects with other (artificial) datasets.

