
‘plgraphics’: A user-oriented collection of graphical R-functions based

on the ‘pl’ concept

Werner A. Stahel, ETH Zurich

October 19, 2023

Abstract

The package, plgraphics , collects enhanced versions of basic plotting functions. It is based on a
paradigm between the basic R graphics elements and the more computer science oriented ggplot
concepts. The intention is to furnish user-oriented functions that allow efficient production of useful
graphics.

Unique features include:

• a simple consistent way to specify plotting symbols, colors, sizes, and many more elements to
tailor plots, including properties of variables such as labels, axis ticks, line types and more,
and to store all these elements for later use.

• a way to show data including outliers in an informative type of scatterplot;

• a novel, more informative alternative to box plots;

• enhanced graphical regression diagnostics for all kinds of models;

• a versatile function to label time axes nicely that automatically adjusts to all ranges of time,
from seconds to years;

• flexible versions of plot matrices (” pairs ”) and conditional plot matrices (” coplot ”).

1

Contents

1 Introduction 4

2 Scatterplots 5

2.1 The basic scatterplot . 5

2.2 Multiple y and x . 9

2.3 Nonlinear plotting scales . 13

2.4 Marking extreme points . 14

2.5 The Multibox Plot for factors . 16

2.6 Censored data . 18

3 Scatterplot matrices 19

3.1 plmatrix . 19

3.2 Conditional plots . 22

4 Regression diagnostic plots 24

4.1 The basic diagnostic plots . 24

4.2 Residuals against input variables . 29

4.3 Censored residuals, conditional quantiles . 34

4.4 Residuals for the Cox model . 35

4.5 Ordinal and binary (logistic) regression . 36

4.6 Residual plots for multivariate regression. 39

4.7 Residual differences and Distance in x-space . 39

5 Specification of graphical elements 41

5.1 Pl options . 41

5.2 Graphical metadata, attributes of variables used for plotting 45

2

5.3 Graphical parameters inside and outside high level pl functions 50

6 Low level graphics 52

7 Auxiliary functions 53

8 Details 55

8.1 Palette . 55

8.2 Point labelling and plotting character . 55

8.3 Groups . 56

8.4 Axes, plotting ranges . 56

8.5 Smooths . 57

8.6 Standardized residuals . 57

8.7 Modified methods for residuals, fitted, predict 57

8.8 Missing values in residual analysis . 58

8.9 Documentation . 58

3

1 Introduction

The plotting functionality is the historical origin of the R package. It has been introduced half a

century ago and has grown for a while. For the sake of upward compatibility, it has been essentially

unchanged for several decades.

New graphical concepts, adjusted to the development of graphical devices and computer science ideas

have been implemented in new packages, notably ggplot ...

The intention of the package plgraphics is to implement some functions that provide for efficient

production of simple to quite sophisticated plots, but are still based on the core R functionality. They

have been developed over a long time with a focus on allowing for readily interpretable graphical

diagnostics for regression model development.

The general idea is that it should be easy to produce standard plots by a simple call like plot(x,y)

or plot(y∼x, data=dd) , as well as enhancing the plot by adding an argument like smooth=TRUE

to ask for a smoother or specifying a column in the dataset that drives the color or yields labels to

mark the points to be shown. Furthermore, scatterplots should remain useful if there are outliers or

one of the two variables is a grouping factor instead of a quantitative variable. This basic function

for plotting y on x is called plyx . It includes plots of several y -variables—as does the standard

function matplot—and produces separate plots for multiple x -variables (Section 2.2).

When studying several variables, a popular standard function is pairs . This package features

plmatrix , extends the functionality of pairs . Similarly, plcond corresponds to the standard func-

tion coplot producing an array of scatterplots of y on x for the combination of different ranges of

two conditioning variables.

Graphical methods are essential as diagnostics for failures of assumptions in regression models. Plots

that have a high potential for showing such flaws are furnished by plregr which makes heavy use of

the basic function plyx .

Asking that a basic function provides many variations under the control of the user means that a large

list of arguments must be available. Some of these variations depend on the taste of the user. They

can be specified in a kind of “style list,” analogous to options and par , which is called ploptions .

Variables may call for specific styles, and points in scatterplots may be made distinguishable by specific

identifying symbols throughout a study. [Plgraphics] stores meta-data along with data.frames that

avoids the need to repeatedly specify such graphical elements when producing multiple displays of the

same data. When working with time series, suitable specifications of axis labelling often need quite

some user input defining tick positions and labels. The package provide a sophisticated function that

usually provides a well adapted solution to this problem.

The package also includes enhanced low level graphical functions like plpoints , which extends the

functionality of points . This leads to a short basic scatterplot function plyx that can easily be

4

modified by the user.

This document presents the main features of the package plgraphics and explains the concepts

behind them.

The package is available from R-forge , e.g. by calling

install.packages("plgraphics", repos="http://r-forge.r-project.org") .

2 Scatterplots

2.1 The basic scatterplot

A basic scatterplot is generated by calling plyx (plot y on x),

plyx(Sepal.Width~Sepal.Length, data=iris, smooth=FALSE)

Sepal.Length
5 6 7 8

S
ep

al
.W

id
th

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5 iris

O
ct

 1
9,

23

Clearly, this strongly resembles the result of simply calling plot , except for the thin gridlines and

some documentation added by default: The name of the dataset is shown as a (sub-) title, and there

is a small text in the lower right corner that shows the date. Without smooth=FALSE , a smooth line

is added, see below.

5

More arguments allow to specify many aspects of the plot.

plyx(Sepal.Width~Sepal.Length, data=iris,

psize=Petal.Length^2, pcol=Species, pch=Species)

Sepal.Length
5 6 7 8

S
ep

al
.W

id
th

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5 iris

O
ct

 1
9,

23

The argument psize sets the size of the plotting symbols such that their area is proportional to

its value. The median size adjusts to the number of observations. pcol specifies the colors of the

symbols.

See 5.2 for details.

Smooth. A smooth line fitting the data in the plot is produced if smooth=TRUE , which is the

default value. The line type, width and color are modified by respective arguments.

Smooths can also be fitted groupwise by specifying smooth.group .

6

plmframes(1,2)

plyx(Sepal.Width~Sepal.Length, data=iris, smooth.col="red")

plyx(Sepal.Width~Sepal.Length, data=iris, smooth.group=Species,

pcol=Species)

Sepal.Length
5 6 7 8

S
ep

al
.W

id
th

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5 iris

O
ct

 1
9,

23

Sepal.Length
5 6 7 8

S
ep

al
.W

id
th

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5 iris

O
ct

 1
9,

23

Setting pcol=Species allowed the color of plotting symbols and smooth lines to be the same. The

call to plmframes splits the screen essentially like par(mfrow=c(1,2)) .

Groups. If the argument by is specified, separate plots will be generated for the different groups

specified by the levels of by variable, thereby maintaining the plot ranges. (An alternative way of

specifying the ’by’ group is a conditional formula, containing a | symbol.)

* The argument mf asks for multiple figures, saving space between panels. If left unspecified, plyx chooses

a matrix of panels. Setting mf=FALSE avoids this.

plyx(Sepal.Width~Sepal.Length, data=iris, by=Species, mf=c(1,3))

7

Sepal.Length
5 6 7 8

S
ep

al
.W

id
th

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

iris

O
ct

 1
9,

23

setosa

Sepal.Length
5 6 7 8

S
ep

al
.W

id
th

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5 versicolor

Sepal.Length
5 6 7 8

S
ep

al
.W

id
th

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5 virginica

or plyx(Sepal.Width~Sepal.Length | Species, data=iris, mf=c(1,3))

Inner range of plots. When there are outliers in the data, plots are dominated by them through

their effect on the plotting range. This means that the user who would like to see more detail about

the “regular” observations needs to generate a new plot, specifying the limits of the plotting range by

xlim and ylim , and the outliers will disappear.

In order to avoid the urge for two versions of the plot, an “inner plotting range” is determined,

based on robust measures of location and scale. Outside this range, there is a plotting margin where

coordinates are transformed with a highly nonlinear function in order to accommodate all outliers.

In these margins, the order of coordinates is still maintained, thus allowing to see which points are

further out than others, but quantitative information is distorted by the transformation. The figure

shows data from the blasting example with an added outlier, plotted without and with inner plotting

limits.

data(d.blast)

dd <- d.blast

dd$distance[2] <- 500

plmframes(1,3)

plyx(tremor~distance, data=dd, innerrange=FALSE)

plyx(tremor~distance, data=dd)

plyx(tremor~distance, data=dd, innerrange.factor=5)

8

distance
 0 100 200 300 400 500

tr
em

or
 0

 5
10

15
20

25

dd

O
ct

 1
9,

23

distance
 50 100

tr
em

or
 0

 5
10

15
20

dd

O
ct

 1
9,

23

distance
 50 100 150

tr
em

or
 0

 5
10

15
20

dd

O
ct

 1
9,

23

If innerrange=TRUE , which is the default, the plgraphics functions will determine an “inner plot-

ting range” based on the 20% trimmed mean and a 20% trimmed scale by default.

* The function robrange , which is called by plinnerrange , determines the α-trimmed mean with α = 0.2 as

the location and the (one-sided) trimmed mean of the deviations from it. It adjusts this latter mean to obtain

an approximately consistent estimate of the standard deviation for normal observations. It then calculates the

location plus-minus innerrange.factor times the scale to get a potential inner range. The final inner plotting

range will be the intersection of this and the ordinary range of the values.

2.2 Multiple y and x

Two or more variables may be given to be plotted on the vertical axis, in the sense of matplot of

R. Often, these are parallel time series, and it is convenient to ask for lines connecting the points,

either type="l" or type="b" . plyx will choose different scales for the different variables unless

rescale=FALSE .

plyx(1:40, EuStockMarkets[1:40,], type="b", smooth.xtrim=0.05)

9

x
 0 10 20 30 40

D
A

X
15

80
16

00
16

20
16

40

O
ct

 1
9,

23
S

M
I

16
40

16
60

16
80

17
00

17
20

17
40

The plotting scales on the left and right side apply to the first two of the four variables displayed.

The following plot shows a more elaborate example of a time series plot, see 5.2 and 5.1 for details

about the generation of a time axis and the additional arguments of plyx , respectively.

data(d.river)

plyx(T+O2+ra+Q~date, data=d.river,

subset=date<as.Date("2010-03-31")&hour==14,

smooth.par=0.5, smooth.xtrim=0.03, smooth.lty=1, sub="river data")

10

2010
11 Feb 21 Feb 1 Mar 11 Mar 21 Mar

T
 4

 6
 8

10

river data

O
ct

 1
9,

23
O

2
0.

36
0.

38
0.

40
0.

42

If multiple x variables are given, a separate plot is drawn for each of them.

plmframes(1,2, mar=c(3,3,3,1))

plyx(Sepal.Length~Petal.Length+Petal.Width, data=iris,

smooth.group=Species, pcol=Species)

11

Petal.Length
2 4 6

S
ep

al
.L

en
gt

h
5

6
7

8

iris

O
ct

 1
9,

23

Petal.Width
0.0 0.5 1.0 1.5 2.0 2.5

S
ep

al
.L

en
gt

h
5

6
7

8

iris

O
ct

 1
9,

23

Raw or transformed variables? Simple formulas just include names of variables on both sides

of the ∼ symbol, separated by “+” if there are more than one. More advanced formulas consist of

terms. (Interaction terms act as two separate terms here.) The user can choose between plotting

the terms or the variables that are involved. The most common terms beyond raw variables are

transformed variables. If the argument transformed is TRUE , the terms will be used as plotting

variables (horizontal or vertical). Otherwise, the plotting variables are obtained by applying all.vars

to both sides of the formula.

plyx(log10(Sepal.Length) ~ log10(Petal.Length*Petal.Width),

data=iris, smooth.group=Species, pcol=Species, transformed=TRUE)

12

log10(Petal.Length * Petal.Width)
−1.0 −0.5 0.0 0.5 1.0

lo
g1

0(
S

ep
al

.L
en

gt
h)

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

iris

O
ct

 1
9,

23

Setting transformed = FALSE produces the same figure as 2.2

2.3 Nonlinear plotting scales

In basic R graphics, “log scale” may be selected by specifying log="y" (or ="x" or ="xy").

plgraphics allows for any monotone transformation. For example, the arc sine transformation

asinp(x) = arcsin
(√

x/100
)
/arcsin(1) is recommended as a “first aid transformation” for percent-

ages. Rather than plotting the transformed variable, the plgraphics functions offer the argument

plscale , which leads to using the function plscale and shows the transformed data with tick marks

reflecting the original scale (as log="y" would do it for basic R).

data(d.babysurvGr)

showd(d.babysurvGr)

dim: 10 4

13

n Survival.0 Survival.1 Weight

1 10 10 0 550

2 14 12 2 650

3 27 18 9 750

...

5 32 9 23 950

6 28 7 21 1050

8 26 7 19 1250

10 32 3 29 1450

plyx(I(100*Survival.1/n) ~ Weight, data=d.babysurvGr, plscale=c("log","asinp"))

Weight
600 700 800 1000 1200 1500

I(
10

0
*

S
ur

vi
va

l.1
/n

)
0

5
10

20
40

60
80

90

d.babysurvGr

O
ct

 1
9,

23

2.4 Marking extreme points

Extreme points are often of interest. They can easily be identified if they are labelled. This is achieved

by setting the argument markextremes .

plmframes(1,2, mar=c(3,3,3,1))

plyx(Sepal.Width~Sepal.Length, data=iris[1:50,], smooth=F,

markextremes=0.1, csize.pch=0.7)

different proportions marked in different margins:

14

plyx(Sepal.Width~Sepal.Length, data=iris[1:50,], smooth=F,

markextremes=list(0,c(0.02,0.2)), csize.pch=1)

Warning in check.ploption(list = largs): :check.ploption: argument ’markextremes’

not suitable. It should

be a function or the name of an existing function. -- or

be numeric

instead of (str())

List of 2

$: num 0

$: num [1:2] 0.02 0.2

Warning in check.ploption(lnam, lopt): :check.ploption: argument ’markextremes’ not

suitable. It should

be a function or the name of an existing function. -- or

be numeric

instead of (str())

List of 2

$: num 0

$: num [1:2] 0.02 0.2

Sepal.Length
4.5 5.0 5.5

S
ep

al
.W

id
th

2.
5

3.
0

3.
5

4.
0

4.
5

O
ct

 1
9,

23

9
14

15

16

19

33
34

37

39

42

43

Sepal.Length
4.5 5.0 5.5

S
ep

al
.W

id
th

2.
5

3.
0

3.
5

4.
0

4.
5

O
ct

 1
9,

23

6
15

16

17
1920

33
34

42

4547

The default value of markextremes is 0 for plyx . If the argument is NA , it depends on the number

15

of observations: It is 1/(2
√
n).

2.5 The Multibox Plot for factors

If the x variable is a factor, R’s generic plot function for formula objects draws box plots. When there

are many observations per group, a box plot constitutes a very rough image of the distribution. The

“multibox plot” is a refinement that shows the distribution in more detail.

The idea is to combine the virtues of the box plot, which is based on the quartiles, with those of a

histogram that depicts the density of the distribution. Essentially, a histogram is drawn using quantiles

as class limits. (Since raw quantiles may be poor characterizations for discrete data, “interpolated

quantiles” are used as class limits.)

The number of quantiles – or the number of classes – used should be adapted to the number of

observations to be represented. For moderate sample sizes, “octiles” appear suitable.

The multibox plot can be called directly.

plmframes() ## reset to just 1 figure per plot

plyx(Sepal.Width~Species, data=iris) ## -- or --

plmboxes(Petal.Length~Species, data=iris)

16

Species
setosa versicolor virginica

P
et

al
.L

en
gt

h
2

4
6

O
ct

 1
9,

23

The multiboxes resemble a well-known kind of presentation of age distributions. Often, these displays

are asymmetric, showing the age distribution of the two genders on the two sides. In much the same

way, asymmetric multibox plots can be drawn to visualize the relationship of the continuous variable

with any binary variable.

data(d.blast)

dd <- plsubset(d.blast, as.numeric(location)<=4)

plmboxes(tremor~location+I(charge>5), data=dd)

17

location
loc1 loc2 loc3 loc4

tr
em

or
 5

10
15

20

O
ct

 1
9,

23

2.6 Censored data

Censored data is shown with special symbols, determined by the ploption censored.pch . The default

for this option contains 8 elements corresponding to the combined cases of no, right and left censoring

of the x and y variables. For the most common case when the y variable is right censored, as is the

case in the following example, the censored observations are shown by (upward) triangles.

require("survival")

Loading required package: survival

data(lung, package="survival") ## not needed temporarily, produces erroneous warning

plmframes(1,2,mar=c(3,3,1,1))

18

plyx(Surv(time,status) ~ age+wt.loss, data=lung, pcol=sex)

age
40 50 60 70 80

S
ur

v(
tim

e,
 s

ta
tu

s)

0
 2

00
 4

00
 6

00
 8

00

lung

O
ct

 1
9,

23

wt.loss
−20 0 20 40

S
ur

v(
tim

e,
 s

ta
tu

s)

0
 2

00
 4

00
 6

00
 8

00

lung

O
ct

 1
9,

23

3 Scatterplot matrices

3.1 plmatrix

The common type of scatterplot matrices are produced by the pairs function in basic R. The function

plmatrix does a similar job.

plmatrix(iris, smooth.group=Species, pcol=Species)

19

S
ep

al
.W

id
th

5 6 7

Sepal.Width

2.0 2.5 3.0 3.5 4.0 2 4 6 0.5 1.0 1.5 2.0 2.5

2.
0

2.
5

3.
0

3.
5

4.
0

P
et

al
.L

en
gt

h

Petal.Length

2
4

6

P
et

al
.W

id
th

Petal.Width

0.
5

1.
0

1.
5

2.
0

2.
5

O
ct

 1
9,

23

Sepal.Length

S
pe

ci
es

O
ct

 1
9,

23

Sepal.Width

O
ct

 1
9,

23

Petal.Length

O
ct

 1
9,

23

Petal.Width

se
to

sa
ve

rs
ic

ol
or

vi
rg

in
ic

a

O
ct

 1
9,

23

plmatrix(~Petal.Length+Petal.Width, ~Sepal.Length+Sepal.Width, data=iris,

smooth.group=Species, pcol=Species)

20

S
ep

al
.L

en
gt

h

2 4 6 0.5 1.0 1.5 2.0 2.5

5
6

7

Petal.Length

S
ep

al
.W

id
th

Petal.Width

2.
0

2.
5

3.
0

3.
5

4.
0

O
ct

 1
9,

23

The second call to plmatrix shows that different variables can be selected for the horizontal and

vertical axes.

If plmatrix is called for a large dataset, with more than 8 variables, say, then it splits the scatterplot

matrix into parts that appear on separate pages in order to avoid that the panels become too small.

The number of panels to be shown in either direction can be set by arguments nrow and ncol .

Otherwise, the function will determine suitable numbers if the total number of panels exceeds the

threshold set in ploptions("mfgtotal") . The default is 30.

21

3.2 Conditional plots

A second handsome function in basic graphics that produces a “matrix” of scatterplots is the coplot .

Each panel is the scatterplot of a pair x and y of variables, where only a subset of points is shown,

and the subset is defined by the intersection of subsets of two variables, the “conditioning” variables.

The panels are arranged in the natural way to form a matrix of scatterplots. The plgraphics version

of coplot is called plcond .

plcond(Sepal.Width~Sepal.Length, data=iris, condvar=~Species+Petal.Length)

22

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

setosa

Species

P
et

al
.L

en
gt

h

versicolor

Species

P
et

al
.L

en
gt

h

virginica

5.
72

6.
90

Species

P
et

al
.L

en
gt

h

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

Species

P
et

al
.L

en
gt

h

Species

P
et

al
.L

en
gt

h
4.

54

Species

P
et

al
.L

en
gt

h

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

Species

P
et

al
.L

en
gt

h

Species

P
et

al
.L

en
gt

h
3.

36

Species

P
et

al
.L

en
gt

h

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

Species

P
et

al
.L

en
gt

h

Species

P
et

al
.L

en
gt

h
2.

18

Species

P
et

al
.L

en
gt

h

Sepal.Length
5 6 7 8

S
ep

al
.W

id
th

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

Species

P
et

al
.L

en
gt

h

5 6 7 8

Species

P
et

al
.L

en
gt

h

5 6 7 8 1.
00

Species

P
et

al
.L

en
gt

h

or plcond(Sepal.Width~Sepal.Length | Species+Petal.Length, data=iris)

The conditioning variables may be factors or numerical variables. In the latter case, the (robust) range

of the variable is partitioned in a number of equally long intervals. Each panel then shows the points

23

in the interval in their ordinary appearance, and, in addition, some points of the neighboring intervals,

with reduced size and paled color. The color is changed to predefined colors indicating whether the

point’s conditioning variable(s) is (are) below or above the interval. All these features are controlled

by pl options.

In the example, the panel for species setosa and Petal.Length between 2.18 and 3.36 only contains

points from the neighboring interval below, and they are all colored in varying shades of blue, the

paling depending on their distance from the lower limit 2.18 . Similarly, for species virginica, the

middle interval contains only one point, and the panel shows several points that properly belong to

the interval above, in shades of purple.

If only one variable is used for conditioning, the function can also be used. It is then an alternative

to using plyx with a by grouping variable.

4 Regression diagnostic plots

Graphical regression diagnostics are the essential tools for developing adequate models in many sta-

tistical problems. The primary purpose of developing plgraphics has been to improve regression

diagnostic plots. The features are obtained by using plregr .

4.1 The basic diagnostic plots

When R objects obtained from fitting a model are fed into R’s plot function, some fundamental

diagnostic plots appear. The figure shows the versions of these displays obtained by plregr in the

case of an ordinary regression.

data(d.blast)

r.blast <-

lm(logst(tremor)~location+log10(distance)+log10(charge), data=d.blast)

plregr(r.blast, xvar=FALSE)

24

fitted values
0.0 0.5 1.0

re
s_

Y
−

0.
4

−
0.

2
 0

.0
 0

.2

logst(tremor) ~ location + log10(distance) + log10(charge)

O
ct

 1
9,

23

fitted values
0.0 0.5 1.0

|s
t.s

m
.r

es
_Y

|
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

O
ct

 1
9,

23
theoretical quantiles

−2 0 2

st
.s

m
.r

es
_Y

−
10

 −
5

 0

O
ct

 1
9,

23
leverage

0.01 0.02 0.03 0.04 0.05

st
.s

m
.r

es
_Y

−
2

 0
 2

1

293

101

198

295105

299

112

308
122

123

124

331
332

168

170

368

176

374

375

376

377

87

184

378 88

379

89

90

91

285

92

95

386

96

97

194

388

O
ct

 1
9,

23

Before we describe the plots in some detail, let us first explain principles guiding the design of

diagnostics.

• Each diagnostic (plot) should be specific for a well-identified potential deficiency of the model.

• Plots are selectively shown in accordance with the type of model that has been fitted. For

example, a normal plot is only shown if the model assumes a normal distribution of the random

deviations.

• Most importantly, residuals are plotted against explanatory variables. This can also be achieved

in plain R by calling termplot for other fit objects, but experience shows that this is often

neglected by the users.

25

• Residuals can be plotted easily against the index (sequence number) of the observation (by

setting the argument plregr(..., sequence=TRUE) , since this may show trends or correlations

of random deviations in time – if the sequence reflects time.

• The plots are augmented by a smooth line fitted to them – which is also available in the classical

R functions – and two additional smooth lines. These allow to judge the scale dependence on

the variable shown: If their distance varies, so does the scale of the residuals. In addition, if

their distance to the central smooth differs, this points to a skewed distribution of the random

deviations—that can also be seen in the qq plot. See the detailed description of the “Smooth

band” below. In addition, simulated smooths are added in order to assess an informal “signif-

icance” of curvature in the smooth of the data. Furthermore, a reference line is given, which

helps finding an appropriate modification of the model if significant curvature is found.

• Finally, plotting methods are defined for models for which no useful methods are available in

the basic R packages, notably ordered response regression and censored responses.

* The �plotselect argument is used to modify the default selection and to indicate if a smooth should be shown.

For example, plregr(rr, plotselect=list(yfit=2, qq=0)) . The plots of residuals against input variables

can be suppressed by setting the argument xvar=FALSE .

* plregr saves space around the panels: it reduces ploptions("mar")[3] by 1.5 (but not lower than 0.5).

Use mar=c(...) with a correspondingly larger mar[3] element if desired.

Let us now describe the panels shown above in some detail.

Residuals against fit, Tukey-Anscombe plot. The plot of residuals against fitted values is

the most important diagnostic tool to assess the validity of model assumptions. It allows for detect-

ing deviations from linearity, homoscedasticity, symmetry and normality of the random deviations’

distribution.

By default, the scatterplot of residuals against fitted values shows the points with the feature of outlier

margins and marking of extremes in the residual direction. It adds a smooth line to show deviations

from the linearity assumption. Another 19 smooth lines are shown to mimic the variability of this

smooth line under the hypothesis that the model is correct.

If there is curvature, one remedy may be to transform the response variable. This can help only if

the relation between fitted and response values is monotone – otherwise, quadratic terms are the most

straightforward modification of the model. Monotonicity is easy to see if the response is plotted on

the vertical axis instead of the residuals. This display can also be requested from plregr (by setting

plotselect=c(yfit=3)).

In order to avoid the necessity to either call plregr again or to ask for the plot of response against

fitted values routinely, a reference line (green dot-dashed line in the Figure) is shown in the Tukey-

Anscombe plot. It connects points with equal response values. Since the response can be determined

26

by adding the two coordinates of the plot – fitted plus residual – lines of equal response values have

slope -1. The reference line shown is such a line, the one going through the center of the points

in the plot. If the smooth never gets steeper than the reference line, then the suggested relation

between fitted and response values is monotone, and a transformation of the response may remove the

non-linearity.

One might argue that a plot of the response on the fit is more straightforwardly interpreted than

the Tukey-Anscombe plot with the reference line. We think that the Tukey-Anscombe plot can show

the deviations from model assumptions more clearly and should therefore be preferred, and that the

reference line, after a short learning period, will be easy enough to work with and helps avoiding an

additional display. Of course, some users may disagree.

* The smoother used by default to generate the smooth lines in the plot is loess(..., span=smooth.par,

iter=smooth.iter) , where smooth.par and smooth.iter are given in ploptions and the default smooth.par

adapts to the number of observations by calling the function smoothpar . If the response of the model is a

count (binary-binomial, Poisson with a low maximal count, or of class polr), the non-robust version is called

by setting iter to 0 and the family argument to gaussian . Otherwise, loess produces a robust smoother.

* Smooth band. As mentioned above, in addition to a smooth line fitted to the points, a “low” and a

“high” smooth line are shown (unless suppressed). They are obtained as follows: Residuals are calculated as the

difference between the observations and the respective smoothed values ŝi. Then a smooth is calculated for the

square roots of the positive residuals, and the squared fitted values are added to the ŝi. (The transformation

by square roots makes the distribution of the residuals more symmetric.) This defines the “high” smooth line.

The construction of the “low” one is analogous. The two lines characterize how something like the low and high

quartiles depend on the horizontal axis, and thus allow to examine the scale and skewness of the distribution

of the random deviations.

Absolute residuals against fit. As a second diagram (often below the first one), the plot of

absolute residuals against fitted values is shown. It is intended to detect heteroscedasticity, more

precisely, variances of the random deviations that depend on the expected value of the response.

Note that the “absolute residuals” shown in this plot are not the absolute values of the residuals used

in the first plot. They differ in two ways:

• They are standardized to have the same variances. If there are weights of observations (argument

weights in the call to the fitting function), these are taken as inverse relative variances of the

random deviations.

• By default, they are modified in the following way. Note first that the plot should show any

dependence of the scale of the random deviations on the model value. If the plot of residuals

against fit shows a clear curvature, the residuals do not show only the random deviations but

also the bias of the regression function, which should be best approximated by the smooth line

in that first plot. Therefore, the residuals from the smooth line are used in the plot of absolute

residuals against fit. Additionally, they are standardized using the same factor that is commonly

27

used for standardizing the ordinary residuals.

* Basic R’s plot method for lm models (and related ones) shows the square root of the absolute residuals. They

are more symmetrically distributed and therefore more suitable for calculating a smooth. plregr also uses

these transformed values for generating the smooth, but still shows the absolute residuals and the smoothing

line in the original scale, since this version is easier to understand.

QQ-plot. The next plot is the normal quantile-quantile plot. It is only shown if the residuals are

expected to follow a normal distribution. (QQ-plots for other distributions are planned.) Note that

the residuals used here are NOT the raw or standardized residuals, but instead, they are generated as

follows: The “residuals from smooth” as explained for the last plot are used to estimate a “smoothed

scale” by obtaining a smooth fit to the square roots of their absolute values against the model fit and

squaring the resulting smoothed values. They are then divided by these smooth-scale values in order

to make them homoscedastic even in the presence of a scale that depends on the model fit.

Residuals against leverage. The influence of individual observations on the results of fitting the

model is measured by the quantities produced by the function influence . The most important mea-

sures are functions of the residuals and the leverage values, often denoted as hi, which are proportional

to Mahalanobis distances from the center of the design based on the (formal) covariance matrix of the

design. Therefore, a plot of residuals against leverages should reveal the overly influential observations.

The leverage plot of plregr uses standardized residuals in contrast to R’s standard leverage plot

shown by plot . In the case of weighted observations, “de-weighted” leverages,

h
(dw)
i = hi/wi = xTi (X

TWX)−1xi

are used, but weights are shown by the symbols’ sizes. This version maintains the idea that leverages

should be proportional to Mahalanobis distances.

* The plot also shows contour lines of constant Cook’s distance, defined as

D
(C)
i =

r2i
pσ̂2

· hi

(1− hi)2
= 1

p r∗2i
hi

1− hi
,

where r∗i denotes the standardized residual. Since the mean of hi is 1/p, an observation with this leverage and

a standardized residual of 1 has D(C) = 1
/
(p− 1). Contour lines are drawn for D

(C)
i = ±c2

/
(p− 1), where c is

given by ploptions("cookdistlines") . Note that this is different from standard R.

In several non-Gaussian models, the estimator can be regarded as a weighted Least Squares estimator

with suitable weights. Therefore, the weighted version of the leverage plot is produced for such models.

Weights. If weights are given by the user, they should usually reflect different variances of the

random deviations Ei, and the residuals, multiplied by the square root of the weights, should have

constant variance. The standardized absolute residuals are therefore plotted against the weights. If

the size of these residuals is not constant but depends on the weight, the rule or weighting function

should be revised.

If weights are given, they are also used as the sizes of the plotting symbols (circles) in other plots.

The argument xvar=FALSE in the statement generating the last plot indicates that by default, plregr

shows more diagrams: the plots of residuals against input variables.

28

The diagrams shown by plregr and their sequence are determined by the argument plotselect ,

see ?plregr for details.

4.2 Residuals against input variables

Since the “x” variables in a regression model cannot always be interpreted as explaining the variability

of the response Y , we call them “input” rather than “explanatory” variables here.

The plots of residuals against these variables are important regression diagnostics since they help to

find better models. They are often neglected since R’s ordinary plot function for models does not

show them. plregr does, unless xvar=FALSE is used as it was above. It does so by calling plresx ,

which can also be done directly.

plresx(r.blast)

29

location
loc1 loc2 loc3 loc4 loc5 loc6 loc7 loc8

re
s_

Y
−

0.
4

−
0.

2
 0

.0
 0

.2

logst(tremor) ~ location + log10(distance) + log10(charge)

O
ct

 1
9,

23

distance
 40 60 80 100 120

re
s_

Y
−

0.
4

−
0.

2
 0

.0
 0

.2

charge
2 4 6

re
s_

Y
−

0.
4

−
0.

2
 0

.0
 0

.2

The diagrams show a smooth and simulated smooth lines as described for the paragraph on “Residuals

against fit” above. For the variables appearing in the model, they also show a reference line in analogy

to that plot. Its precise interpretation is somewhat more complicated, but the intention is again to

show a line of constant response values. Since the other variables also influence the response, this can

only be achieved keeping all other variables constant.

* More precisely, the reference line connects points for which the sum of the “component effect” β̂jx
(j) plus

residual is equal. The function fitcomp calculates the coordinates of the reference line. The “other variables”
are set to their median if numeric and to their mode if ordinal.

A band for it can be requested by setting refline=2 . It reflects a confidence band for the regression function

value.

Note that the slope of the reference line is negative if the regressor has a positive effect on the response.

30

The line is again useful for finding an adequate modification if a curved smooth appears: If the

smooth never gets steeper than the reference line, a monotone transformation of the regressor can

help. Otherwise, adding its square to the model may help.

Alternatively, the sums “component effect β̂jx
(j) plus residual” may be used as the vertical axis

instead of the residuals for plotting. This display is usually called the “partial residual plot” and can

be obtained from plregr , too. It is related to the plots shown by default in the same way as the

response versus fitted plot is to the Tukey-Anscombe plot.

The input variables are often transformed before they are used in the linear predictor, and the main

purpose of showing a plot of residuals against them is to possibly find a (more) adequate transforma-

tion. For those that have been transformed already, the adequate transformation may be more easily

guessed if the untransformed version is used in the plot. The transformed variables can be called for

by setting transformed=TRUE .

plresx(r.blast, transformed=TRUE, refline=2, xvar=~.-location, mf=c(1,2))

log10(distance)
1.6 1.8 2.0

re
s_

Y
−

0.
4

−
0.

2
 0

.0
 0

.2

31

log10(charge)
0.2 0.4 0.6 0.8

re
s_

Y
−

0.
4

−
0.

2
 0

.0
 0

.2

* The raw input variables are those appearing in the formula, as delivered by all.vars(formula) . The trans-

formed input variables are those appearing in the terms of the formula, as delivered by

rownames(attr(terms(formula[1:2]), "factors")) .

* If the fit object contains a variable weight , then residuals will be plotted against these weights by default,
unless it is the result of glm .

The argument sequence=TRUE will produce a plot of residuals against the sequence of the observations in the

dataset. This diagram may show serial correlations or groupings if the sequence reflects such patterns.

Plotting residuals against two regressors. A missing interaction term between x1 and x2

may be found when examining a plot or residuals against these two variables. This is achieved by the

function plrex2x . It produces a scatterplot of x1 against x2 and represents the residuals as line

segments with positive or negative slope, according to their sign. The absolute value determines the

length of the segment.

data(d.blast)

dd <- plsubset(d.blast, as.numeric(location)%in%1:3)

rsubs <- lm(log10(tremor)~log10(distance)+log10(charge)+location, data=dd)

plres2x(~ log10(distance) + log10(charge), reg=rsubs, pcol=location)

32

distance
 40 60 80 100 120

ch
ar

ge
2

4
6

res_Y ~ log10(tremor)

O
ct

 1
9,

23

An interaction between a factor and a continuous variable may be examined more effectively by plotting

the residuals against the continuous variable and asking for smooths for each level of the factor.

plresx(r.blast, xvar=~ log10(distance), pcol=location, smooth.group=location)

..gensmooth: too few observations for a ’high’ smooth for group 7

..gensmooth: too few observations for a ’low’ smooth for group 7

33

distance
 40 60 80 100 120

re
s_

Y
−

0.
4

−
0.

2
 0

.0
 0

.2

4.3 Censored residuals, conditional quantiles

For censored observations of a response variable, residuals are not clearly defined. In the case of

right censoring, the underlying response value of a censored observation is known to exceed a given

threshold. Therefore, the “true residual” exceeds a corresponding threshold. Then, the fitted model

defines a conditional distribution for the true residual.

Conditional quantiles. Function condquant calculates the quartiles of the conditional distribu-

tion for each residual and, in addition, generates a corresponding random number. It also stores the

probability of the condition.

These quantities are then used for plotting: the conditional median is shown together with segments

connecting the conditional quartiles. This results in residual plots like those shown in the figure.

require(survival)

data(lung) ## not needed temporarily, produces erroneous warning

r.lung <- survreg(survival::Surv(time,status) ~ age+sex+wt.loss, data=lung)

plregr(r.lung, plotselect=c(default=0, resfit=1), xvar=FALSE, smooth.sim=0)

34

fitted values
5.6 5.8 6.0 6.2 6.4 6.6

re
s_

Y
−

3
−

2
−

1
 0

 1
survival::Surv(time, status) ~ age + sex + wt.loss

O
ct

 1
9,

23

4.4 Residuals for the Cox model

The Cox proportional hazards model, the most frequently used model in survival analysis, is a semi-

parametric model. There is no obvious meaning of the notion residual in this context. The Cox-Snell

residuals RCS are defined in a way that they always follow an exponential distribution. Since this is

an unusual law for residuals, it is convenient to transform them such that they then obey a standard

normal distribution,

R = Φ−1(1− exp(−RCS)) .

Note that it is useless to draw a QQ-plot of these residuals, since they obey the normal law by

construction. They should be plotted against the linear predictor values (Tukey-Anscombe plot) and

against the input variables.

* The censored observations are shown with lighter color than the uncensored ones: their pcol is paled by

applying colorpale with a pale of ploptions("condquant.pale")[1] . The color of the bars representing

the quartiles is the paled pcol , paled again by pale=ploptions("condquant.pale")[2] If all observations

35

are censored, no paling is applied to the symbols, and ploptions("condquant.pale")[1] is used for the bars.

4.5 Ordinal and binary (logistic) regression

In ordinal regression, the response variable is modeled as a classified version of a continuous latent

variable, which in turn follows a linear model with logistic (or normal) distribution of the random

errors. According to this construction, the latent variable Ỹi, given the observed ordered variable Yi
and the linear predictor ηi, follows a truncated logistic (or normal) distribution. As with censored

variables (Section 2.6), this yields conditional quantiles, which can be represented as described above.

require(MASS)

Loading required package: MASS

data(housing, package="MASS")

rr <- polr(Sat ~ Infl + Type + Cont, weights = Freq, data = housing)

plregr(rr, plotselect=c(resfit=2, default=0), xvar=FALSE)

##

Re-fitting to get Hessian

fitted values
−1.0 −0.5 0.0 0.5 1.0 1.5

re
s_

S
at

−
3

−
2

−
1

 0
 1

 2

Sat ~ Infl + Type + Cont

O
ct

 1
9,

23

36

A logistic regression can be seen as a special case of an ordinal regression. Therefore, conditional

quantiles can also be obtained for the residuals, and the respective displays can be generated. The

following figure shows the residuals against linear predictor values, first with conditional quantiles,

then with “working” residuals, one of the usual choices. Note that the smooth lines usually are

increasing. As the simulated lines show, this does not means that there in any deficiency. The upward

bump of the solid line, however, may be seen as a deviation from model assumptions.

data(d.babysurvival)

r.babys <- glm(Survival~Weight+Age+Apgar1,data=d.babysurvival,family=binomial)

plmframes(2,1, mar=c(3,3,3,1))

plregr(r.babys, plotselect=c(resfit=2, default=0), xvar=FALSE, mf=FALSE)

plregr(r.babys, plotselect=c(resfit=2, default=0), condquant=FALSE,

xvar=FALSE, mf=FALSE)

37

fitted values
−2 0 2 4

re
s_

S
ur

vi
va

l
−

1.
5

−
1.

0
−

0.
5

 0
.0

 0
.5

 1
.0

Survival ~ Weight + Age + Apgar1

O
ct

 1
9,

23

fitted values
−2 0 2 4

re
s_

S
ur

vi
va

l
−

1.
5

−
1.

0
−

0.
5

 0
.0

 0
.5

 1
.0

O
ct

 1
9,

23

38

* If condquant is false, the type of residuals is selected by the argument or ploption glm.restype . Its default

is "working" , because the linear approximation of the model corresponds to a weighted linear regression with

the linear predictor values and the working residuals as fitted values and residuals. The weights are shown by

the sizes of the plotting symbols.

4.6 Residual plots for multivariate regression.

For multivariate regression, the plots corresponding to each target variable should be examined. They

are arranged such that the same type of plot for the different response variables are grouped together,

and a matrix of plots is produced for residuals against input variables. In addition, the qq-plot of

Mahalanobis norms of residuals is shown as well as the scatterplot matrix of residuals.

4.7 Residual differences and Distance in x-space

If there are groups of observations with identical input variables (or identical xi vectors), then there

is the possibility to perform a kind of overall goodness-of-fit test by comparing the variability of the

residuals within these groups to the estimated variance of the random deviations. This is performed by

a simple Analysis of Variance of the standardized residuals with the grouping just mentioned. (Note

that this method can be applied even if some or many xi vectors are unique.)

If such groups are not available, an old idea, described by Daniel and Wood (1971/80) is to use

“near replicates” for this purpose. They introduced a distance in x-space that they called WSSD

and suggested to calculate all distances between observations along with the corresponding differences

of residuals. If the differences of residuals are smaller for short distances than for long ones, then

this points to a lack of fit of the model, which might be avoided by introducing additional terms or

modelling nonlinear dependencies through transformations of variables. The procedure however does

not suggest which modifications may help.

As to the distance measure dhi, Daniel & Wood (1971) introduced their WSSD (weighted Squared

Standard Distance (?)) with the intention to weigh variables according to their “importance” for the

model. Since this feature seems too much dependent on the parametrization of the model, I prefer to

use the Mahalanobis distance in the design space,

d
(X)
hi = n(xi − xh)

T (XTX)−1(xi − xh)

(which can be calculated efficiently from the QR decomposition of X).

The distance pairs and the respective differences of residuals are calculated by the function

xdistResdiff . They are grouped and the corresponding group means of absolute residual differences

are then produced by xdistResscale . The distances are then classified, and the residual differences

are averaged over these classes. This yields a pair of mean distance d
(X)
k and mean residual differences

d
(R)
k for each class k. (Trimmed means (α = 1/6) are used by default to obtain some robustness

against outliers.) These pairs are then plotted.

39

The class limits are chosen by fixing the percentages of distance values that they should contain. By

default, the first class is quite small – because plausible deviations from the null hypothesis will lead

to lower mean residual differences for short distances –, followed by a somewhat larger class, then a

really big class for an intermediate range and finally a class (again somewhat smaller) for the upper

end. The current default limits are therefore at 3%,10%, and 90%.

In order to assess the variability of the mean residual differences, we resort to simulation. The residuals

are permuted among the observations, and then the calculation of differences is repeated. (In fact, the

assignment of residual differences to the observation pairs is re-determined.) This leads to simulated

mean differences for each class, and their standard deviations can be used as standard errors of the

observed mean differences. Corresponding error bars are shown in the plot.

data(d.blast)

rr <- lm(tremor~distance+charge, data=d.blast)

an inadequate model!

xdrd <- xdistResdiff(rr)

plot(xdrd, zeroline.col="darkgreen")

distance in x space
0 0.01 0.02 0.05 0.1 0.15 0.2

av
er

ag
e

ab
s.

 r
es

id
ua

l d
iff

er
en

ce
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

O
ct

 1
9,

23

40

This idea can also be used for a test of goodness of fit: The test statistic

T =
∑K

k=1

(
(d

(R)
k − d)

/
sek

)2

should have a Chisquared distribution with K − 1 degrees of freedom. The test is calculated by the

function xdistResscale along with the mean distances and mean residual differences.

5 Specification of graphical elements

A central motivation underlying the plgraphics package consists of allowing for using graphical

elements very flexibly and implementing an easy way to specify and maintain such options. They

are set either explicitly by calling ploptions or generated by high level pl functions and stored for

further use.

5.1 Pl options

The graphical elements, like plotting character, color, line types, etc. to be used in pl graphics are

specified by the function ploptions in the same way as R’s graphical “parameters” and other options

are determined by the functions par and options . In addition to such general options, elements

determining how variables will be plotted are stored along with the data as “properties” of variables.

t.plopt <- ploptions(col="magenta", pch=3, smooth.lty=4)

plyx(Sepal.Width~Sepal.Length, data=iris)

41

Sepal.Length
5 6 7 8

S
ep

al
.W

id
th

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5 iris

O
ct

 1
9,

23

restore the old options

ploptions(list=attr(t.plopt, "old"))

There are some differences between the behavior of ploptions and par :

• The pl options are stored in a list .ploptions in the environment pl.envir .

• There is a list default.ploptions in the package. It collects the package’s default settings

and is used as a backup if some components should not be contained in .ploptions .

• Both of these lists can be overridden by objects with the same name that appear earlier in the

search list than the plgraphics package.

• The value returned by ploptions is the entire, modified list of pl options. The old values are

stored in the attribute attr(,"old") to be used for restoring them, see above.

Remark. The concept of the ploptions list is a version of a more general idea, suggesting that

the default values of any “high level” R function should have an associated list of default arguments,

which is not contained in the function definition, but stored separately. This would allow the user

more generally to specify his own style by changing these defaults and storing them in a kind of style

file to be loaded at the start of each session. Here, there is only one list because the various pl functions

need the same graphical elements.

42

Thus, a graphical element like a plotting character is generally searched in

1. the argument list of the calling function,

2. the ploptions argument of the calling function,

3. the .ploptions list in environment pl.envir ,

4. the list default.ploptions in the package plgraphics or in an environment hiding it.

The components of these lists include

• colors , the palette of colors to be used;

• linewidth , the linewidths used for the different line types. If the line types are shown with the

same lwd , they are perceived with different intensity. linewidth intends to compensate this

effect.

• cex , a factor applied to the current value of par("cex") to determine the general character

expansion used by the pl functions.

• cex.pch , the median character expansion. The default is the function cexSize , with argument

n , defined as min(1.5/log10(n), 2) , that is called when the number n of observations is

available. Alternatively, a fixed scalar can be given.

• a group of basic components: pch, cex, cex.pch, cex.plab, lty, lwd, col .

cex is a factor which will be applied to cex.pch above for showing points by a single symbol

(pch),

cex.plab is an additional factor applied for the points that are shown by plab .

• a group of components named group (group.pch, ...). They characterize how different

groups will be displayed. Thus, group.pch should be a vector defining the plotting symbol for

the first, second, ... group (when there are groups in the data).

• a group named variables , defining the elements to be used when different variables should be

distinguishable;

• censored.pch and censored.cex used to show censored observations;

• mar, oma, mgp, thickintervals , specifying the number of lines in the figure’s margins and

outer margins, the “margin parameters” as in par , and the targeted number of tick intervals

for axis labelling. The latter usually consists of 2 numbers, specifying the number of intervals

for all ticks and for labelled ones, respectively.

• stamp , logical value determining if a stamp should be added in the bottom right corner of each

plotting page;

43

• a group innerrange , determining if and how an inner plotting range should be used and

generated;

• plext : factor by which the range of the data should be extended unless an inner range is active

(in which case the extension is determined by innerrange.ext), and

plsymbolext : further extension to allow for large symbols near the limits of the plotting range;

• markextremes sets the proportion of extreme points that are shown with labels to help iden-

tify them. If set to TRUE , the proportion depends on the number n of observations through

ceiling(sqrt(n)/2)/n .

• title.cex determines the character expansion of the plot title. By default, it adapts to the

length of the title. For long titles, it will however never be smaller than title.cexmin . If

title.cex has 2 elements, the second refers to the subtitle.

• a group grid . If grid is a list of two vectors, it contains the values where vertical and horizontal

thin lines are drawn. If it is TRUE , the gridlines correspond to the tickmarks of the two axes.

grid.lty, grid.lwd, grid.col set the respective properties for the gridlines.

• a group zeroline , which is analogous to grid , but the default of zeroline is TRUE , which

leads to using 0 for numerical variables and none for factors. The properties are independent of

those for grid ;

• a group refline , where the component refline can be logical or ==2 , the latter indicating

the a band should also be shown if available. Alternatively, refline can be a vector of length

2, which will be interpreted as intercept and slope of a straight line, or be a function that yields

such a vector and takes as the first two arguments x and y or a first argument named formula

which will be set to y∼x . The properties lty, lwd, col to be used in plrefline are again

defined as above;

• a group smooth , containing items needed for generating and drawing smooth lines;

• a group bar needed to show reference values for levels of factors used as input variables in

regression diagnostic plots;

• factor.show indicates the way in which plots with factors are shown, presently only if one of

the two variables (x or y) is a factor and the other, quantitative. Then, the factor can be jittered

and then used as a quantitative variable, or a box plot or a “multibox plot” can be chosen.

• jitter : logical indicating if factors should be shown with jittering. A named vector may be

given that defines the jittering for each variable.

jitter.factor is the jittering factor used, see ?jitter .

• condprobrange is used to determine which bars should be shown in the case of censored data.

• functionxvalues contains the number of argument values for which a smooth function or

fitting component is evaluated in diagnostic plots.

44

• leveragelimit determines the range used for leverage values when plotting residuals against

leverages.

• A group plcond controlling features within the function plcond .

If these options modify any setting of R’s par list and they are set as arguments to high level pl

functions (plyx, plmatrix, plmboxes, plregr, plresx), as well as plframe and plaxis , they

are restored after leaving the function (please report failures!). When plmframes is called by the

user, the information to restore the old settings is contained in its (invisible) value. Thus,

op <- plmframes(1,3)

plyx(Sepal.Width~Sepal.Length, data=iris, group=Species, mar=c(3,1,3,0))

par(attr(op, "oldpar"))

par("mfg")

[1] 1 1 1 1

will restore the old settings. Here, we have commented out the plotting statement to save space.

The options that are finally used in high level pl displays are saved as the list ploptions in an envi-

ronment called pl.envir . They will be retrieved by subsequent low level pl functions, like plpoints .

They can be inspected and changed by, e.g., pl.envir$mar or pl.envir$mar< −c(5,3,2,1) . (The
list .ploption , with a leading dot, stores the options set by the function ploptions .)

5.2 Graphical metadata, attributes of variables used for plotting

Pl graphics rely on generating and maintaining metadata that guide the details of creating the plots.

They are stored as an enriched dataset that contains the variables needed for the displays called

pldata . We first describe them and then show how pldata is generated and made available.

Properties of observations. The first type of such properties relates to the observations and

includes the plotting symbol, color and size for each of them. These specifications are

• pch : plotting symbol (character);

• plab : plotting label, an extension of pch to more than one symbol, often used to identify

observations;

• psize : plotting size, scaled by the pl option cex ;

• pcol : color of the symbol. This can be a factor. Then, the colors in ploptions("group.color")

are used according to the levels of the factor.

It can be numeric and should then contain low integer values. Values > 0 are used again to

select from ploptions("group.color") ; A value 0 selects ploptions("color")[1] which is

black unless changed. Negative values lead to a color of NA and will suppress plotting of the

45

point.

If pcol is logical, it is converted to pcol+1 and selects the first two group colors.

These elements are stored in pldata as columns with names (pch) , (plab) , (psize) , (pcol) .

They are specified by the user usually by setting the corresponding arguments pch, plab, psize,

pcol in high level pl functions. These arguments are not listed explicitly in the help files of the

high level functions. Instead, these functions call pl.control to set them. Alternatively, they may

already be contained in the dataset given by the argument data .

plyx(Sepal.Width~Sepal.Length, data=iris,

pch=Species, psize=Petal.Length, pcol=Species)

Sepal.Length
5 6 7 8

S
ep

al
.W

id
th

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5 iris

O
ct

 1
9,

23

table(pl.envir$pldata[,".pch."])

##

1 2 3

50 50 50

46

As the last statement shows, the pldata dataset is available after calling the plotting function in the

environment pl.envir .

Properties of variables. A second type of properties determines how variables should be dis-

played. These are

• varname and varlabel : variable name and label – to be used for labelling the axis on which

the variable is shown –, typically identical to the name of the variable in the data.frame it comes

from;

• numvalues : numerical values to represent the given data values in case these are not numeric

or for other reasons, see gendateaxis below;

• plscale : transformation function to generate the “plotting scale”;

• plvalues : values used for plotting if different from numvalues , typically transformed values;

• plcoord : plotting coordinates, if different from plvalues , typically when an inner plotting

range is active.

Thus, plotting coordinates are defined as those first found searching for attributes plcoord, plvalues,

numvalues and finally the original values of the variable. Further properties are:

• innerrange, plrange : inner and outer plotting range;

• innerrange.ext : extension used to calculate plrange from innerrange , if the latter does

not cover all points;

• nouter : the number of points modified at each end of the inner range;

• vlim, vlimsc : range within which the plotting should occur, that is, xlim or ylim , if the

variable is used as the horizontal and vertical axis, respectively, either on original or transformed

scale;

• ticksat : the values for which tick marks will be shown in plots. This item may carry an

attribute small that leads to an additional set of smaller tickmarks;

• ticklabelsat the possibly tick labels ticklabels : positions of labels to indicate values of

the variable, and the labels themselves;

• vpch, vlty, vcol : plotting symbol, line type and color to be used if multiple y’s are shown

in a plot. These elements are obtained by default from ploptions("variables.xxx") , where

xxx is pch , lty , or col .

These elements are stored as attributes of the variables, e.g., attr(var, "thicksat") . They can

be set (or generated by the function genvarattributes and then modified) before calling the high

level pl function. Those that are needed and have not been stored beforehand will be generated by

pl.control when calling such a function.

47

dd <- iris ## (avoid a modified version of iris in .GlobalEnv)

attr(dd$Sepal.Length, "grid") <- seq(4,8,0.5)

attr(dd$Sepal.Length, "ticksat") <- structure(seq(4, 8, 1), small=seq(4,8,0.2))

plyx(Sepal.Width~Sepal.Length, data=dd)

Sepal.Length
5 6 7 8

S
ep

al
.W

id
th

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5 dd

O
ct

 1
9,

23

pl.control . High level pl functions call the function pl.control first. It generates the “plotting

dataset” pldata , which collects data dependent information needed for plotting in an enriched, stan-

dardized form. It also takes any further arguments to be passed on to ploptions . The result is stored

in the pl.envir environment. This allows for inspection of the plotting data pl.envir$pldata and

the active ploptions (pl.envir$ploptions) and thereby helps debugging.

Plot scale. Showing a variable with a “plot scale”, like “log scale”, means to transform the

values with a given function (log), storing them in the attribute plvalues , and setting ticksat,

ticklabelsat and ticklabels corresponding to “pretty” values of the original scale. The function

that generates these attributes is plscale . It can be called explicitly in order to fix the scale as a

48

property of the variable in the dataset it comes from, or implicitly by setting the argument plscale

when calling a high level function, see 2.3.

dd <- d.babysurvGr

plyx(I(100*Survival.1/n) ~ Weight, data=d.babysurvGr, plscale=c("log","asinp"))

Weight
600 700 800 1000 1200 1500

I(
10

0
*

S
ur

vi
va

l.1
/n

)
0

5
10

20
40

60
80

90

d.babysurvGr

O
ct

 1
9,

23

or, in order to fix the plotting scale for further use

t.survp <- with(dd, 100*Survival.1/n)

dd$SurvPerc <- plscale(t.survp, "asinp")

dd$Weight <- plscale(dd$Weight, "log")

attr(dd$Weight, "ticklabels")

[1] "600" "700" "800" "1000" "1200" "1500"

str(dd$SurvPerc)

num [1:10] 0 14.3 33.3 36.4 71.9 ...

49

- attr(*, "plvalues")= num [1:10] 0 0.247 0.392 0.412 0.644 ...

- attr(*, "ticksat")= num [1:8] 0 0.144 0.205 0.295 0.436 ...

- attr(*, "ticklabelsat")= num [1:8] 0 0.144 0.205 0.295 0.436 ...

- attr(*, "ticklabels")= chr [1:8] "0" "5" "10" "20" ...

- attr(*, "plscale")= chr "asinp"

or dd <- genvarattributes(dd, plscale=c(Weight="log",SurvPerc="asinp"))

plyx(SurvPerc~Weight, data=dd) ## now produces the same plot as above

Date variable. Similarly, the function gendateaxis provides nice tick values and labels for vari-

ables expressing a date or time. The function gendate helps to generate such a date. If a variable

inherits from class Date or times , it will be shown automatically in this way.

5.3 Graphical parameters inside and outside high level pl functions

The high level pl functions set graphical parameters (by calling par) according to their needs and

they often set pl options. When they end, they reset the par parameters to the previous values unless

the argument keeppar is TRUE . Since quite often, the parameters determining the width of the plot

margins are changed, subsequent calls to low level R functions would not work properly, that is, points

within the plotting area as well as elements put to the margin by mtext(...) would be wrongly

positioned. As an alternative to setting keeppar=TRUE , the function plmarginpar can be called to

set the “margin parameters” mar, oma, mgp, cex to the values used in the last call to a high level

pl function. These are available from pl.envir$ploptions (unless assign was FALSE in this call).

plmframes(1,2)

par(mar=c(2,2,5,2))

plyx(Sepal.Width~Sepal.Length, data=iris) ## margins according to ploptions

par("mar") ## parameters have been recovered

[1] 2 2 5 2

mtext("wrong place for text",3,1, col="red") ## margins not appropriate for active plot

t.usr <- par("usr")

points(t.usr[2],t.usr[4], pch="X", col="red")

plpoints(t.usr[2],t.usr[4], pch="+", col="blue")

t.plo <- plmarginpar() ## get margin parameters from pl.envir

generated by the last pl graphics call

par("mar")

50

[1] 3.20 2.96 2.60 1.66

mtext("here is the right place",3,1, col="blue")

points(t.usr[2],t.usr[4], pch="O", col="blue")

par(attr(t.plo, "oldpar")) ## restores old 'margin parameters'

named list()

par("mar")

[1] 3.20 2.96 2.60 1.66

plyx(Sepal.Width~Sepal.Length, data=iris, keeppar=TRUE)

par("mar")

[1] 3.20 2.96 2.60 1.66

mtext("this goes to the right place, too",3,1)

Sepal.Length
5 6 7 8

S
ep

al
.W

id
th

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5 iris

O
ct

 1
9,

23

wrong place for text
X+

here is the right place

O

Sepal.Length
5 6 7 8

S
ep

al
.W

id
th

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5 iris

O
ct

 1
9,

23

this goes to the right place, too

51

The low level pl functions to be presented next avoid this problem. However, if you want to use

these for adding to a figure started with a standard plotting function (and you have different margin

parameters from those in usr.ploptions), then you need to set marpar=FALSE in their call.

par(mar=c(2,2,5,2))

plot(1:10)

plpoints(8,9, col="red") ## wrong

plpoints(8,9, col="blue", setpar=FALSE) ## correct

2 4 6 8 10

2
4

6
8

10

Index

1:
10

6 Low level graphics

Like in basic R, there are “low level” graphical functions that add to an existing plot, whereas “high

level” functions are designed to generate a full plot. Low level plotting functions include:

• plframe generates a new frame, frames the inner and outer plotting ranges and draws gridlines

and axes, the latter by calling plaxis .

• plaxis draws an axis based on the attributes of the variable given as the second argument.

• plpoints draws points and lines.

In the simplest case, this function places the plotting symbol at the given coordinates. As

52

the basic points function, it draws lines if the argument type is set to "l" or "b" , and

the argument pch (or the column ".pch." in plargs$pldata) can provide different plotting

symbols for the different points.

plpoints also includes the capabilities of text : If the argument plab is set (or plargs$pldata
contains a column named ".plab."), it should be a character vector and is reproduced at the

(x,y) locations. Values NA or "" being replaced by the plotting symbol in pch .

The size of the plotting symbols or strings is determined by plargs$pldata[,"psize"] if

available and by the ploptions cex and cex.pch .

If one or both coordinate variables contain censored values (that is, if they inherit from the class

"Surv"), the censored observations are shown by the appropriate symbol from

ploptions("censored.pch") and with paled color (according to ploptions("censored.pale")).

• plmark can be used to mark extreme points by labels and leave the non-extreme ones to be

shown by the plotting symbol.

• plsmooth and plsmoothline generates a smooth line and draws it in the plot, respectively.

• plrefline adds reference lines (straight lines or curves) to a plot. It is used by plregr and

plresx .

• pltitle adds a title. By default, the character size (given by the ploption "title.cex" is

decreased for long titles (main or sub) to fit it onto one line.

• pllimits and plcoord determine inner plotting range (see above) and the respective coordi-

nates where the points outside of it will appear on the plot.

• stamp adds a time stamp and, if available, a project and analysis step title to the right bottom

corner of the plotting page. This is avoided by setting ploptions(stamp=FALSE) .

plpanel is a “medium level” function. It calls all of the above functions. The user can re-program

this function to modify and expand the actions that are taken, store the modified function, e.g. under

my.panel and then set the argument panel = my.panel in plyx and plmatrix , or change the

ploption, ploptions(panel=my.panel) .

Coordinates from last high level pl function. The low level functions that act on x and

y coordinates can be used with empty x and y arguments. They will then obtain these values

from pl.envir$pldata , which is generated and stored by high level pl functions and will thus reflect

the coordinates that are likely the bases of the current plot. The pl options are also recovered from

pl.envir (unless the argument ploptions is specified in the call to the low level function).

7 Auxiliary functions

These functions do calculations needed for generating graphical elements (like generating a smooth)

or are useful additional functions, like showd , which displays a kind of summary of data. Let us start

with the latter category.

53

Displaying data by showd . This function is useful for inspecting a data set or another object,

avoiding overwhelming output. If the number of rows or list components is larger than 4, the first 3 of

them and the last one are shown only. For rows in data.frames or matrices, two of the rows between

the forth and the last one are also printed.

Subset of a data.frame. The function plsubset extracts a subset of a data.frame in a similar

way as the subset function of plain R. The essential enhancement is that it keeps the graphical

metadata and adjusts it where necessary.

Counting NA ’s. sumNA counts the number of NA ’s in vectors, matrices, and lists, including

data.frames. For numerical objects, infinite values are counted as NA ’s (unless the argument inf is

FALSE).

Started logarithm. Variables that contain only positive numbers usually call for a log trans-

formation according to the “first aid transformation” principle of data analysis introduced by John

Tukey. If they also contain zeros, the log function turns them into -Inf . This is rarely desirable.

A common way to avoid it is to add 1 to the variable before taking logs. This is unreasonable, since

adding 1 has a very different effect on the result, depending on the magnitude of the range of non-zero

values of the variable. At least, the constant should adapt to this magnitude. Another solution of the

problem is given by the rule that below some value c, the function should be linear, with a smooth

derivative in c. This is implemented in the function logst , defining the value c as a function of the

quartiles of the non-zero values.

To be precise, logst is defined as{
log10(x) if x ≥ c
log10(c)− (c− x)/(c log(10)) if x < c

.

The threshold c is set to c = q1+r
1 /qr3, where q1 and q3 are the quartiles of the positive data and r

is a tuning constant. The default of r is 1 and leads to an expected percentage of about 2% of the

data below c for log-normal data. It is certainly useful to inspect a graph of the function, as drawn in

example(logst).

The use of logst in regression will cause problems when calculating predicted values for new data,

since its result depends on the whole dataset through the determination of c by default. Therefore, c

can be given to logst by the argument threshold .

Other auxiliary functions include

• getvariables gets the variables contained in a formula.

• clipat , drops data outside a range or replaces them with NA or a suitable value.

• warn summarizes warnings, thus avoiding endless repetitions of the same warning.

Plotting properties. Auxiliary functions used for getting plotting properties are

• gensmooth , the wrapper function for getting smooths. It in turn calls smoothRegr by default.

54

• robrange determines a robust range of data to be used as inner plotting range.

• simresiduals simulates residuals used for generating additional smooths to which the actual

one can be compared.

• colorpale determines a paled version of a color.

8 Details

8.1 Palette

Even though the palette that is active in the global environment is not affected, the pl functions use

an implicit palette given by ploptions("colors") . By default, the list is

default.ploptions$colors

[1] "black" "red" "blue" "darkgreen" "orange"

[6] "purple" "deepskyblue2" "green3" "coral4" "pink3"

[11] "aquamarine3" "brown2"

The selection of these colors has been driven by the following ideas:

• The first few should be readily distinguishable and reflect a common sequence: after the default

“black”, the most salient one is red, followed by blue, then “darkgreen” because “green” is lighter

than the foregoing, and finally “orange”.

• The first colors should be simply named. If the user explicitly sets one of them, e.g., by

attr(data$var, "col") < − "red" , the pl functions have a chance to avoid them when mak-

ing default decisions.

• After the first group of 4 alternative colors, another group of 4 follows. It is a modification of

the first group. The third group is incomplete as no blueish color could be found that would be

distinct enough from the foregoing colors.

8.2 Point labelling and plotting character

The properties of the symbols displaying observations are set by the following rules.

1. If they are specified by the respective argument to high level pl function (and evaluated by

pl.control), this has priority (exception, see 2.).

2. In the case of multiple ys, colors are determined primarily by the argument vcol of the high level

pl function, secondarily by the vcol attribute of the variables. Thirdly,

55

ploptions("variables.col") is used, avoiding colors that are already specified for some

variables by the foregoing steps (see i.getvarattribute , called by genvarattributes in

pl.control .)

If pch is not determined otherwise (argument, see 1., or group, see 3.) it is set in the same way.

For plots of type "l" or "b" , the line type lty is determined in the same way as the color.

3. If there is grouping and only a single y, the group determines pch and its color by the group

components of ploptions unless set by 1. above.

4. In other cases, the default group of ploptions is used.

8.3 Groups

Pl functions may use a grouping of observations, defined by an argument group=... in different

ways. plyx splits the observations accordingly and produces a panel for each group.

Other types of groupings are:

• Smooth groups. The argument smooth.group allows for drawing a separate smooth line for

each group.

• Color. Groups get different colors by specifying pcol . If the value is a factor, it will be

converted into ploptions("group.col")[as.numeric(pcol)] . In order to give color by color

names, make sure that pcol is a character variable.

8.4 Axes, plotting ranges

Setting pl ranges. The regular and inner plotting ranges can be set by specifying vlim and

innerrange as attributes of variables using setvarattributes (or directly setting the attributes

attr(dd, "plrange") or attr(dd, "innerrange")), or by giving named lists of vectors of length

2 as arguments of high level pl functions.

The ”variable limits” vlim can also be set as xlim and ylim arguments of high level functions.

Set the innerrange attribute by calling genvarattributes . Otherwise, you need to call also

plcoord in order to have a conforming plcoord attribute of the variable(s). Note that the resulting

innerrange may differ from the required inner range at the end(s) where no data are modified (

nouter==0).

Tick marks. The tick mark occur in three “degrees”, the first one being labelled, the second (called

“regular”) being only shown by a mark, the third, by a short mark. (The lengths of the tick marks

are determined by the ploption ticklength .)

Gridlines, zeroline. If the ploption grid is TRUE , grid lines will be drawn at each (regular)

tick of both axes. Alternatively, the variable attribute gridline can be specified either directly

or by setvarattribute (The plotting properties col, lty, lwd are determined by the ploptions

grid.col, grid.lty, grid.lwd .)

56

Likewise, lines can be obtained by setting the variable attribute zeroline and the respective options.

By default, a zero line is drawn at 0 for numerical variables.

Axis label. The plotting routine (plframe) will look for an attribute varlabel . If it is not

available, the name of the variable will be used.

8.5 Smooths

Within the graphical functions, smooths are generated by calling gensmooth . It calls the function

determined by ploptions("smooth.function") , which defaults to smoothRegr , and that function

calls basic R’s loess .

The smoothing parameter, which in the default option is the span argument of loess , depends on

the number of observations by the function smoothpar (unless set differently by the user).

8.6 Standardized residuals

R∗
i = Ri

/(
σ̂
√
wi

√
1−Hii

)
Standardization ratio: stratio i = R∗

i /Ri

i.stres calculates leverages, standardized residuals, and strratio according to this formula. For

binary and Poisson models, ...

Cook’s distance:

d
(C)
i =

R2
i Hii

pσ̂2 (1−Hii)2
= (1/p)R∗2

i Hii/(1−Hii) ,

It is constant, = d, on the curve

R∗2
i = d p (1−Hii)/Hii

A rule suggests d = 4/(n− p) as a warning level. Curves are drawn for d = cookdistlines 2/(n− p).

8.7 Modified methods for residuals, fitted, predict

Some methods for the extractor functions residuals, fitted, predict needed modifications and

extensions. For example, type="link" is needed for polr models. The package contains a method

predict.regrpolr which is used within the package and provides the additional type, but is otherwise

compatible with predict.polr of the package MASS . It is exported. Similarly, there are the meth-

ods fitted.regrpolr, residuals.regrpolr, residuals.regrsurvreg, residuals.regrcoxph .

Since a method for residuals is not available in the MASS package for models fitted by polr ,

residuals.regrpolr is also made available as residuals.polr and thereby provides the missing

method.

57

8.8 Missing values in residual analysis

Model fitting functions in R support two different ways of dealing with missing values. The default is

determined by the value na.omit of the argument na.action . This leads to residuals as extracted by

the residuals function and other analogous results that do not contain the observations with missing

values in the data used for fitting. As a consequence, they cannot be readily combined with variables

from the dataset. The alternative choice, na.action=na.exclude , corrects this flaw. Vectors of

residuals will contain NA s where appropriate and have the same length as the variables in the data.

The pl functions plregr, plresx, plres2x work with the extended version. This is reflected in

pl.envir$pldata and allows for combining that data.frame with the original dataset.

8.9 Documentation

For a data analysis, it is often useful to save graphical displays in documents or on paper. In an

extended data analysis, one can easily lose control over the precise content of the different plots.

plgraphics provides some help for keeping track.

• Every graphical display generated by a graphical function from the package gets a “stamp” in

the lower right corner that indicates date and time of its creation and, if specified by the user

before that time point, a project title and a step name (by writing

ploptions(project=projecttitle, step=stepname)).

This stamp can of course be suppressed, e.g., for producing publication graphics: set

ploptions(stamp=FALSE) .

• Data sets may be documented by attaching two attributes, tit and doc – title and description

–, which will be printed with numerical output if desired. Currently, this only works with the

function showd . This feature is disabled by setting ploptions(doc=FALSE) .

tit(iris) <- "Fisher's iris data"

doc(iris) <- "The most famous statistical dataset ever"

showd(iris)

Fisher's iris data

The most famous statistical dataset ever

dim: 150 5

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

...

40 5.1 3.4 1.5 0.2 setosa

58

76 6.6 3.0 4.4 1.4 versicolor

113 6.8 3.0 5.5 2.1 virginica

150 5.9 3.0 5.1 1.8 virginica

This is the end of the story for the time being. I hope that you will get into using plgraphics and have
good success with your data analyses. Feedback is highly appreciated.

Werner Stahel, stahel at stat.math.ethz.ch

options(olddigits)

59

