
Quasi-likelihood Estimation with R

Markus Baaske

Abstract

We introduce the R package qle for simulation-based quasi-likelihood parameter es-
timation. We briefly summarise the basic theory of quasi-likelihood for our setting and
outline the algorithmic framework of the proposed method. We focus on the general
workflow using the package and present two introductory examples. Finally, we apply the
method to an example data set from spatial statistics.

Keywords: quasi-likelihood, simulation-based estimation, black box optimization, kriging meta-
model, cross-validation, uncertainty, R.

1. Introduction

The R package qle implements methods for parametric inference for a generic class of estima-
tion problems where we can at least simulate a (hypothesized) statistical model and compute
certain summary statistics of the resulting model outcome. The method is an extended
and modified version of the algorithm proposed in Baaske, Ballani, and van den Boogaart
(2014). The aim of this paper is to present the algorithmic framework of our simulation-based
quasi-likelihood estimation (SQLE) approach for parametric statistical models. The method
employes the first two moments of the involved summary statistics by simulation and con-
structs a quasi-likelihood approximation for estimating the statistical model parameter. An
application of our method to the problem of inferring parameters of a spheroid distribution
from planar sections can be found in Baaske, Ballani, and Illgen (2018).

We assume that, given the data, no closed-form expressions or direct computation algorithms
of likelihood functions or distribution characteristics, as functions of the model parameter, are
available. One may also be unable or reluctant to formulate a likelihood function for complex
statistical models. This precludes many standard estimation methods, such as maximum like-
lihood (ML) estimation, typical Bayesian algorithms (including Markov-Chain-Monte-Carlo-
type algorithms), or (generalized) least squares (LS) based on exact distribution character-
istics. In many settings, it is still conceptually possible to consider some observed data as a
realization of a vector of random variables whose joint distribution depends on an unknown
parameter. If a statistical model provides enough information about the data generating pro-
cess, we can think of it as partially specifying some aspects of the distribution. However, it
may be still possible to approximately compute characteristics of the data as Monte Carlo
estimates from computer simulations. Such characteristics can be any sort of descriptive sum-
mary statistics which carry ”enough“ information about the unknown dependency between
simulated realizations and the model parameter. Usually, these ”informative“ statistics are
context-dependent and can be specifically tailored for the setting of the parameter estimation

2 Quasi-likelihood with R

problem under investigation.

1.1. Quasi-likelihood approach

If we could simulate the statistical model fast enough such that the Monte Carlo error of the
statistics becomes neglectable, a general approach for estimating the model parameter would
be to minimize some measure of discrepancy, i. e. a criterion function, finding those param-
eters which lead to simulated statistics most similar to the observed ones in the sense of a
least squares, minimum contrast criterion, or, more generally, estimating functions approach,
see Godambe (1991) and also Jesus and Chandler (2011)1. The estimator of the true model
parameter could then be found by a standard numerical solver. However, complex statisti-
cal models usually require very time-consuming, computationally intensive simulations and
typically the Monte Carlo error cannot be made small enough within a reasonable timeframe
such that any direct application of the above estimation approaches would become numerically
infeasible.

Conceptually, our method is based on the class of linear estimating functions in its most
general form of minimum (asymptotic) variance unbiased estimation. We adapt the so-called
quasi-score (QS) estimating function to the setting where generated realizations of the sta-
tistical model can be characterised by a set of appropriately chosen summary statistics. The
derivation of the QS is part of the general approach of quasi-likelihood (QL) estimation, see
Heyde (1997), which subsumes standard parameter estimation methods such as, for example,
ML or (weighted) LS. The QL estimator is finally derived from the solution to the QS equation
(see Section 2). As a common starting point the QS can be seen as a gradient specification
similar to the score vector in ML theory. If a likelihood is available, both functions coincide
and the score function from ML is an optimal estimating function in the sense of QL.

Except in some rare cases, when expectations, derivatives thereof and variances of the statis-
tics are known at least numerically, any kind of criterion function derived from one of the
above criteria, including the QL approach, would lack a closed-form expression and could
only be computed slowly with substantial random error either due to the inherent simulation
variance or erroneous evaluation of the involved statistics. In fact, nothing is said about a
QL function in theory which could be employed as an objective function for minimization in
order to derive an estimate of the true model parameter. Therefore, our idea is to treat such a
function as a black box objective function and to transform the general parameter estimation
problem into a simulation-based optimization setting with an expensive objective function.
For this kind of optimization problem it is assumed that derivative information is either not
available or computationally prohibitive such that gradient-based or Newton-type methods
are not directly applicable.

1.2. Background on black box optimization

A general problem which holds both for finding a minimum of an expensive objective function
or a solution to the QS equation is to efficiently explore the parameter search space when only
a limited computational budget is available for simulation. A suitable approach for this kind of
problem relies on the use of response surface models in place of the original black box function
for optimization. Examples include first-degree and second-degree (multivariate) polynomial

1For a more recent review on estimating functions and its relation to other methods

Markus Baaske 3

approximations of response functions, which are broadly used, for example, in the response
surface methodology, see Myers and Montgomery (1995). Another approach includes the
kriging methodology (see, e. g. Sacks, Stiller, and Welch 1989a; Cressie 1993; Kleijnen and van
Beers 2009) which treats the response of an objective function as a realization of a stochastic
process. The main idea is to start by evaluating the expensive function at sampled points
of a generated (space-filling) experimental design over the whole parameter space. Then a
global response surface model is constructed and fitted based on the initially evaluated design
points and further used to identify promising points for subsequent function evaluations. This
process is repeated, now including the newly evaluated points, for sequential updates of the
response surface model. In order to improve the model within subsequent iterations the aim
is to select new evaluation points which help to estimate the location of the optimum, that is,
the unknown parameter in our setting, and, at the same time, identifying sparsely sampled
regions of the parameter search space where little information about the criterion function is
available.

In this context, kriging has become very popular mainly for two reasons: first, it allows to
capture and exploit the data-inherent smoothness properties by specifically tuned covariance
models which measure the spatial dependency of the response variable and, second, it provides
an indication of the overall achievable prediction or estimation accuracy. Almost all kriging-
based global optimization methods, such as the well-known Efficient Global Optimization
algorithm by Jones, Schonlau, and Welch (1998), are based on the evaluation of kriging
prediction variances in one way or another2. Although these models have been widely used in
the community of global optimization of expensive black box functions with applications to
engeneering and economic sciences these seem to be less popular in the context of simulation
estimation.

1.3. Main contribution

Opposed to the general framework of black box optimization, where some scalar-valued ob-
jective function is directly constructed via kriging, we propose the use of kriging models for
each involved summary statistic separately because, unlike the QS function itself, only the
statistics can be estimated unbiasedly from simulations. Based on these multiple kriging
models we construct an approximating QS estimating function and estimate the unknown
model parameter as a root of the resulting QS vector. Therefore, our main contribution is
to combine the QL estimation approach with a black box framework that allows to handle
time-consuming simulations of complex statistical models for an efficient estimation of the
parameter of a hypothesized true model when only a limited computational budget is avail-
able. Besides this, the use of kriging models enables the estimation procedure to be guided
towards regions of the parameter space where the unknown model parameter can be found
with some probability and hence helps to save computing resources during estimation.

It is worth noting that there exist other R packages which make use of the QL concept
in one or another way. For example, the function glm (R Core Team 2017) for fitting a
generalized linear model is closely related to the estimation theory by Wedderburn (1974)
which is known under the general term of quasi-likelihood methods. From the viewpoint of
estimating functions this approach can be considered a special case of the more general QL
theory in Heyde (1997). Also the package gee (Ripley 2015) is made for a rather different

2See Jones (2001) for a comprehensive overview of kriging-based surrogate modelling.

4 Quasi-likelihood with R

setting which uses the moment-based generalized estimating equations, see Liang and Zeger
(1986). This package mostly deals with analysing clustered and longitudinal data which
typically consist of a series of repeated measurements of usually correlated response variables.
Further, the package gmm (Chaussé 2010) implements the generalized method of moments
(Hansen 1982) for situations in which the moment conditions are available as closed-form
expressions. However, if the population moments are too difficult to compute, one can apply
the simulated method of moments (SMM), see McFadden (1989). The moment conditions are
then evaluated as functions of the parameter by Monte Carlo simulations. Also, the package
spatstat (Baddeley, Turner, Mateu, and Bevan 2005) includes a so-called quasi-likelihood
method. However, the implementation is specifically made for the analysis of point process
models.

Our method is specifically designed to deal with situations where only a single measurement
(i. e. ”real-world“ observation or raw data) is available and from which we can compute the
(observed) summary statistics. To this end, we assume that we can define and simulate a
parametric statistical model which reveals some information about the underlying data gen-
erating process. Then the parameter of interest (under this model) is inferred from a solution
to the QS equation based on these statistics. The computational complexity of our method is,
therefore, mostly dominated by the effort of simulating the statistical model and evaluating
the involved statistics. The main aim of the package is to provide an efficient implementa-
tion for generic parameter estimation problems which combines the involved statistics into a
tractable estimating function for simulation when no other types of parametric inference can
be applied.

The vignette is organized as follows. In Section 2 we briefly present the basic theory of
QL estimation followed by an outline of the main algorithm in Section 3. We discuss some
extensions of our originally proposed algorithm in Section 4. Finally, in Section 5, we provide
some illustrative examples of a typical workflow of using the package.

2. Basic quasi-likelihood theory

In this section we sketch the main aspects of the general QL theory, see Heyde (1997). Let X
be a random variable on the sample space X whose distribution Pθ depends on the unknown
parameter θ ∈ Θ taking values in an open subset Θ of the q-dimensional Euclidean space
Rq. The goal is to estimate θ given the observed data x = X. We assume that the family
of models Pθ is rich enough to characterise and distinguish different values of the generative
parameters. Let T : X → Rp with p ≥ q be a transformation function of the data to a set
of summary statistics and y = T (x) is the respective (column) vector of summary statistics.
We follow the QS estimating function approach to estimate θ by equating the QS

Q(θ, y) =

(
∂Eθ[T (X)]

∂θ

)t
Varθ(T (X))−1(y − Eθ[T (X]) (2.1)

to zero, where (·)t denotes transpose, and, respectively, Eθ and Varθ denote expectation and
variance w.r.t. Pθ.

For a fixed vector of summary statistics T ∈ Rp we focus on the function G(θ, y) = y −
Eθ [T (X)] as a vector of dimension p, for which Eθ [G] = 0 for each Pθ and for which the
matrices Eθ [∂G/∂θ] and Eθ

[
GGt

]
are nonsingular. The QS estimating function in (2.1) is

Markus Baaske 5

the standardized estimating function

G̃ = −
(
Eθ

[
∂G

∂θ

])t
(Eθ
[
GGt

]
)−1G (2.2)

for which the information criterion

E(G) = Eθ

[
G̃G̃t

]
=

(
Eθ

[
∂G

∂θ

])t
(Eθ[GG

t])−1

(
Eθ

[
∂G

∂θ

])
(2.3)

is maximized in the partial order of non-negative definite matrices among all linear unbiased
estimating functions of the form A(θ)(y − Eθ [(T (X)], where A(θ) is any nonsingular matrix.
The information criterion in (2.3) is seen as generalization of the well-known Fisher informa-
tion since it coincides with the Fisher information in case a likelihood is available such that
G equals the score function in ML theory. Then, in analogy to ML estimation, the inverse
of E(G) has a direct interpretation as the asymptotic variance of the estimator θ̂0. More-
over, E(G) might serve as a measure of how much the statistics T contribute to the precision
of the estimator derived from the QS equation. Under rather minor regularity conditions,
the estimator θ̂0 obtained from solving the estimating equation Q(θ̂0, y) = 0 has minimum
asymptotic variance among all functions G and consistency (see, e. g. Liang and Zeger 1995)
is established due to the unbiasedness assumption of the estimating equation in (2.1) which
yields, in terms of its root, a consistent estimator θ̂0 even if the covariance structure is not
correctly specified. The information criterion in (2.3), given a vector T of summary statistics,
then reads

I(θ) = Varθ(Q(θ, T (X))) =

(
∂Eθ [T (X)]

∂θ

)t
Varθ(T (X))−1

(
∂Eθ [T (X)]

∂θ

)
, (2.4)

which we call quasi-information (QI) matrix in what follows. In particular, if we had an
analytical or at least a numerically tractable form of the involved expectations and variances,
we could apply a gradient based method to solve the QS equation similar to finding a root
of the score vector in ML estimation. However, since closed-form representations of expecta-
tions and variances are generally unavailable for complex statistical models or prohibitive to
compute we assume that we can only simulate realizations of the random variable X under
Pθ at any θ ∈ Θ.

3. Simulated quasi-likelihood estimation method

Let Z : Θ→ Rp be a function of the model parameter θ ∈ Θ to the expected value of T , i. e.
Z(θ) = Eθ[T (X)], and let V (θ) = Varθ(T (X)) denote the variance of the statistics under Pθ.
Since we assume that we can only infer T (X) by simulated realizations of X we treat Z and V
as deterministic black box functions, which could be very expensive to evaluate in practice. In
order to compute the QS function at θ the sample means of the statistics and the variance V
are approximated by kriging models, denoted as Ẑ and, respectively, V̂ . Since both functions
can only be evaluated with a random error due to the simulation replications of the statistical
model we explicitly account for the resulting approximation error in the construction of the
QS function by adding the kriging prediction variances of the sample means of the statistics

6 Quasi-likelihood with R

(seen as a measure of predictive accuracy) to V̂ as diagonal terms (see Section 4.3). Then,
the resulting approximation of the QS reads

Q̂(θ, y) = Ẑ ′(θ)tV̂ (θ)−1(y − Ẑ(θ)) (3.1)

given the observed statistics Y = y. Analogously, the approximation of the information
matrix in (2.4) is

Î(θ) = Ẑ ′(θ)tV̂ (θ)−1Ẑ ′(θ), (3.2)

where Ẑ ′ ∈ Rq×p denotes the Jacobian (the matrix of partial derivatives of Ẑ) which is
numerically computed by finite differences based on the kriging approximations of Z. The
included diagonal terms play the role of individual weights for the vector of contrasts y− Ẑ(θ)
in (3.1) according to the predicted error of Ẑ. Likewise, for the QI matrix in (3.2), the partial
derivatives of the kriging predictor Ẑ are similarly weighted. Thus, the above QS accounts
for the noises due to the simulation replications of the statistical model. Note that, compared
to the typically high simulation effort required to obtain an estimate of the statistics, the
approximations of the QS function and QI matrix can be computed inexpensively once the
kriging models have been constructed. Besides the kriging approach to approximate V the
package additionally provides other types of variance average approximations, see Dryden,
Koloydenko, and Zhou (2009), including a kernel-weighted verion based on the QI matrix.

Further, the SQLE method implements two criterion functions for estimation. The first one
is directly derived from quasi-likelihood theory. The so-called quasi-deviance (QD) is defined
by

s(θ) = Q̂(θ)tÎ(θ)−1Q̂(θ), (3.3)

where we suppress the dependency on the observed statistics y for convenience. In particular,
the QS and QD are considered as inexpensive approximations of their respective counterparts
if T could be computed from X under the model Pθ without error at any θ ∈ D. The QD -
roughly speaking - measures the ”deviance“ of the QS vector from zero and thus provides a
global view on the estimation problem with the goal of solving the QS equation. Opposed to
this, the Mahalanobis distance (MD), which reads

m(θ) = {y − Ẑ(θ)}t Σ−1
θ {y − Ẑ(θ)}, (3.4)

where Σ is a positive definite matrix, such as an estimate of the asymptotic variance of y,
has a direct interpretation as a (weighted or generalized) least squares criterion depending
on the employed type of variance matrix approximation. It can be seen as a special case of
SMM, where, in our implementation, either Σθ = Σ(θ) is evaluated as a function of θ (using
Monte Carlo simulations) or considered as a ”constant“ estimate for fixed θ. In principle, both
criterion functions can be used to guide the estimation procedure towards a (possibly local)
minimum or a root of the QS function. However, in contrast to the QD, the gradient of the
MD for constant Σ,

m′(θ) = Ẑ ′(θ)tΣ−1(y − Ẑ(θ)), (3.5)

is readily available (ignoring irrelevant factors) and thus can be used to minimize the criterion
function by gradient based methods. This makes the MD also desireable in terms of efficiency
and numerical stability for local searches. Obviously, in case the problem dimension equals
the number of summary statistics, i. e. p = q, both criterion functions coincide. Note that
since the MD can be subsumed under the general term of quasi-likelihood, different versions

Markus Baaske 7

Generate design,
simulate and validate models,

construct QS surrogate

Construct and minimize
a criterion function

Stop?

Local/Global
phase?

Global
sampling

Local
sampling

Simulate and update

Check
convergence
and return

no

yes

Figure 1: Algorithmic strucure of function qle

(see documentation) of the MD are implemented in the package mainly for two reasons: first,
the MD could be used as a preliminary step in order to identify suitable starting points
for parameter estimation and, secondly, to assess the goodness-of-fit of the estimated model
parameter.

3.1. Algorithmic overview

An outline of the algorithmic framework of our method is given in Figure 1. The basic
algorithm starts by generating an experimental design of size n0 of space-filling points, i. e.
the parameters in our setting, and evaluates the statistics at these initial design points by
simulation. We say that an evaluated point is a point of the search spaceD where the statistical
model is simulated w.r.t. to this parameter or synonymously called ”point“. Based on the
same set of sample points and initially simulated statistics, the kriging models are separately
constructed for each statistic T (j) ∈ R, j = 1, . . . , p so that the algorithm needs to maintain
and update p kriging models simultaneously each time a new evaluation point is added. Also,
the user has the option to analyse the initially generated design based on the chosen covariance
structure in terms of its adequacy for both the observed and simulated values of the statistics,
the prediction accuracy and the basic assumptions of the data phenomenon (see Section 4.5).
Moreover, the prediction variance for each point is used to account for the approximation
error of the QS vector depending on the current iterate θ each time the algorithm requests
a new function value of the QS or the criterion function. In particular, finding a solution to

8 Quasi-likelihood with R

the subproblems in (3.6) and (3.9) also requires to evaluate either of them.

During the main iteration the algorithm updates the QS approximation and the criterion
function based on newly evaluated design points, that is, we sequentially select new parameters
of the search space for simulating the statistical model by the dual goal of improving the
approximations and, at the same time, narrowing the region of possible solutions of the QS
function. To achieve this, the algorithm is split into a local and global phase (see Section 4.1
and 4.2) as shown in Figure 1, each using its own sampling and selection criterion for new
candidates and search methods to improve the current parameter estimate. In particular, the
global phase explores unvisited regions based on one of the criterion functions where in some
sense is evidence to suspect a global or local solution to the parameter estimation problem. On
the contrary, the local phase exploits promising local regions for small values of the criterion
function in the vicinity of an approximate root or a minimizer. If the value of the criterion
function drops below a user-defined tolerance at some point, we immediately switch to the
local phase and, otherwise, continue with sampling in the global phase. Thus, the algorithm
is allowed to dynamically switch the phases depending on the number of successful iterations
towards a potential parameter estimate. The proposed sampling strategies and selection
criteria ensure that the search space becomes overall densely sampled if the algorithm is
allowed to iterate infinitly often. Moreover, it keeps a ballance between global and local
search steps which is essential for the efficiency of the method in practical applications and,
at least in theory, guarantees to find a global minimum.

3.2. Approximately solving the quasi-score equation

Througout this section we use the QD as the only criterion function for monitoring the
estimation. We aim on estimating θ0 = θ0(T) for given T as the parameter of the hypothesized
true model Pθ0 . Using Q̂ in (3.1) we deduce an estimate θ̂ ∈ D from a solution to the
approximating QS equation

Q̂(θ) ≈ 0 (3.6)

by a Fisher quasi-scoring iteration (see, e. g. Osborne 1992). In practice, we observed that
solving (3.6) might cause numerical instabilities for small- or medium-sized sets of (initial)
sample points due to potential approximation inaccuracies of the resulting QS equation.
Therefore, even if there are no roots identifiable, we aim on searching for at least an ap-
proximate (local) minimizer of one of the criterion functions and then proceed using this last
estimate. If we neither assume that equation (3.6) has a unique root nor that it exists, then,
a common approach is to restrict the estimation to ”plausible“ regions of the parameter space
as to guarantee the existence of a solution. Therefore, we define the parameter search space
by

D = {θ ∈ Θ : θl ≤ θ ≤ θu} ⊂ Θ, (3.7)

where θl ∈ Rq and θu ∈ Rq denote the lower and upper bounds, respectively, as simple bound
constraints. In case of multiple roots, restricting to reasonably chosen smaller subregions
might also be a pragmatic solution to distinguish between them. Another approach is given
in Section 3.4.

In our implementation, the quasi-scoring algorithm is defined as a projected Newton-type
iteration with the update

h = Î(θ)−1Q̂(θ),

θ ← PD[θ + αh],
(3.8)

Markus Baaske 9

where PD denotes the projection operator on D and 0 < α ≤ 1 is a step size parameter for the
quasi-scoring correction h ∈ Rq. In contrast to the usual setting of ML estimation the quasi-
scoring iteration lacks explicit values of an objective function, monitoring the progress of the
iterates towards a root, because of the (in theory) left undefined quasi-likelihood function. A
natural way to measure the progress (adjusting the correction h and step length parameter
α accordingly) is to use the QD as a monitor function. Therefore, the purpose of the QD
is twofold: on the one hand, it is used as a surrogate objective function to monitor the root
finding and guarantees the existence of a global minimum over D ⊂ Θ. On the other hand,
given the observed statistics, we can also set up a hypothesis (see Section 4.7) of the estimated
parameter to be the true one based on the approximating QS and QD as a test statistic.

As a surrogate objective function, a global minimizer of the QD takes the QS closest to
zero (in the limit of a sequence of surrogate minimizations) and hence is considered to be
an estimate, not necessarily unique, of the unknown model parameter. However, the quasi-
scoring iteration might fail to converge in practice mainly for two reasons. Besides pathological
cases, for example, if no true root exists in D, there are no theoretically backed up tests of
some sort of sufficient decrease condition (by contrast to, for example, the Goldstein test or
Armijo condition for ML estimation), which would ensure global convergence to a root of the
QS by a suitable line search strategy. Therefore, we follow a hybrid search strategy in our
implementation as follows. If the quasi-scoring iteration fails, we switch to some derivative-free
optimization method (see, e. g. Conn, Scheinberg, and Vicente 2009) in order to approximately
solve the QS equation because we assume that derivatives of any of the involved quantities of
the QD are unavailable or computational prohibitive to obtain. In case of non-convergence,
we search for a minimizer of the (asymptotically) equivalent optimization problem

min s(θ) (3.9)

s.t. θ ∈ D. (3.10)

However, the condition that h is a descent direction, particularly for the QD function, must
be also checked to ensure a reasonable descrease after each updated correction. In order to
avoid additional expensive numerical computations of function values and derivatives of the
QS we implement this check as part of a line search procedure using the simple condition

s(PD[θ + αh]) < s(θ)− ε (3.11)

of decreasing function values coupled with a backtracking algorithm, where ε > 0 is used to
ensure a minimum improvement in each iteration similar to the sufficient decrease condition
in the Goldstein-Armijo rule. Further, a backtracking line search is applied on the projection
arc PD[θ + αh] and hence all iterates stay within the feasable set D.

3.3. Estimating the error of the quasi-score approximation

As a measure of accuracy of the QS approximation we transform the prediction variances into
an approximation error of the QS function. To this end, let

B̂θ = Ẑ ′(θ)V̂ (θ)−1 ∈ Rq×p (3.12)

be a non-random weighting matrix given the data Y = y w.r.t. to Pθ. Then, assuming B̂θ
and the statistical error of the QS function to be known, the QS approximation error reads

Ĉ(θ) = Var(B̂θ(y − Ẑ(θ))) = B̂θΣ̂K(θ)B̂t
θ ∈ Rq×q, (3.13)

10 Quasi-likelihood with R

where the variance operation is w.r.t. to the distribution of the kriging predictor Ẑ and Σ̂K

denotes the diagonal matrix of kriging variances. Since the inverse of the QI matrix serves
as an estimated statistical lower bound (like the Cramér-Rao bound in ML theory) on the
estimation error of θ̂0, we can compare the QS approximation error with the overall achievable
accuracy given by the QI matrix in (3.2). More specifically, if the largest generalized eigenvalue
(see, e. g. Golub and Loan 1996), say λmax = λmax(θ), of these two matrices drops below some
limit c� 1 such that

Ĉ �L c · Î (3.14)

holds in the Loewner partial ordering of non-negative definite matrices, we say, that the QS
approximation error is negligible compared to the predicted error of θ̂. This can be seen as an
indication that no further benefit can be expected (from sampling new points) since we cannot
get any better in estimating the unknown model parameter given the simulated statistics at
the current design.

3.4. Termination conditions

We define two types of termination conditions of the estimation procedure. First, the statis-
tical stopping conditions, control the sampling process and measure the level of accuracy of
the QS approximation and, secondly, the numerical conditions which heuristically monitor
the convergence of the sequence of approximated roots of the QS or stationary points of the
criterion function. The algorithm stops sampling new evaluation points as soon as any of
these conditions hold and immediately terminates the estimation.

The statistical conditions measure the improvement of the QS approximation achieved at
iteration n. Since any criterion for stopping may strongly fluctuate from one iteration to
another due to the simulation variability, we require some of them to hold for at least a number
of consecutive iterations wich can be specified as an input argument to the algorithm. More
specifically, we compare the approximation error of the QS to its overall achievable accuracy
measured by the estimated QI matrix via the maximum generalized eigenvalue, say λmaxn .
If λmaxn < λtol or λreln < λrel hold for at least Nλ, respectively, Nλrel consecutive iterations
we stop sampling. Both conditions relate to the fact of only approximately knowing the QS
vector based on the assumed stochastic model within a black box treatment of the involved
expectations and variances. We immediately stop the main iteration of the allgorithm if any
of the above termination condition holds.

In order to monitor the numerical convergence of the iterates, let

Qmax(θ) = max
1≤i≤q

{|(Q̂(θ̂))(i)|}

denote the largest absolute deviation of the quasi-score vector from zero. Numerical con-
vergence, besides others, is signaled by the conditions Qmax(θ) < τ0 and s(θ) < stol, where
stol > 0 and τ0 > 0 are user-specified constants. For sufficiently small constants stol, τ0 both
conditions indicate an approximate root of the QS vector. In particular, the latter also al-
lows for a statistical interpretation of the quasi-deviance as part of a Monte Carlo approach
for testing the goodness-of-fit of the statistical model w.r.t. the estimated parameter θ̂ and
provides us with another statistical stopping condition (see Section 4.7).

4. Extensions and modifications

Markus Baaske 11

This section presents some extensions to the originally proposed QL approach in Baaske et al.
(2014). Although it gives some insight in the algorithmic structure of the method the section
can be skipped.

4.1. Select local evaluation points

Let
Sn = {θ1, . . . , θn} ⊂ D. (4.1)

denote the sampling set of points of size n. The idea is to consider the value of the QD as
a test statistic and hence using it as a decision rule to switch between the global and local
phase of the algorithm. Suppose the algorithm has either found a solution θ∗ to the QS
equation in (3.6) or a (local) minimizer of the QD in (3.9) at some iteration n ≥ n0 based
on the current sampling set Sn. If the value of the QD function at θ∗ is small compared to a
user-defined upper bound, then θ∗ is considered as an estimate of the model parameter and
the algorithm stays in its local phase exploring the local vicinity for further refinement of
θ∗. During both phases the algorithm samples new points of D which we call candidates for
evaluation. In particular, during the local phase the algorithm randomly generates candidate
points (without evaluating them) θ ∈ Ωl

n, where Ωl
n denotes the set of local candidates,

according to a multivariate normal distribution with mean equal to the current minimizer
and variance equal to the inverse information matrix in (3.2). Otherwise, the algorithm is in
its global phase.

In order to measure the potential benefit of adding some point out of all candidates in Ωl
n

during the local phase of the algorithm we adapt the idea proposed in Regis and Shoemaker
(2007) to our setting. Let

s̄n(θ) := Q̂n(θ)tĈn(θ)−1Q̂n(θ) (4.2)

denote a modified version of the QD in (3.3), that is, the quasi-information matrix replaced
by the error matrix of the QS vector (see Section 3.3) at iteration n. Then

s̃n(θ) =

{
s̄n(θ)−s̄min

n

s̄max
n −s̄min

n
if s̄min

n 6= s̄max
n

1 otherwise.
(4.3)

denotes its normalized value where the minimum and maximum of the modified QD is given
as s̄min

n = min{s̄n(θ) : θ ∈ Ωl
n} and, respectively, s̄max

n = max{s̄n(θ) : θ ∈ Ωl
n}. Also let

∆n(θ) = min
θ̃∈Sn

||θ − θ̃||2

denote the minimum distance of points θ ∈ D to all previously sampled points belonging to
Sn. Then, the maximum and minimum values of these distances over all pairs of n points in
D are given by

∆min
n = min{∆n(θ) : θ ∈ D},

∆max
n = max{∆n(θ) : θ ∈ D}.

Again, we normalize the distances ∆n(θ) to the interval [0, 1] by

wn(θ) =

{
∆max

n −∆n(θ)
∆max

n −∆min
n

if ∆min
n 6= ∆max

n

1 otherwise.

12 Quasi-likelihood with R

Then, the next point which minimizes

vn(θ) = γlj s̃n(θ) + (1− γlj)wn(θ) (4.4)

is added to Sn for evaluation, where 1 ≤ j ≤ r and θ ∈ Ωl
n. For given weights 0 ≤ γl1, . . . , γlr ≤

1 we refer to Γl = 〈γl1, . . . , γlr〉 as a local weight pattern of cycle length r. The weights define
the degree of global/local selection of new evaluation points. More specifically, this local
selection criterion results in minimizing the modified QD if γlr = 1 and otherwise, if γl1 = 0,
maximizing the minimum distance to all other sampling points from Sn. Cycling through
Γl selects new points which have relatively low values of the modified QD and become more
distant to previously sampled points for increasing weights. Based on the newly simulated
statistics at the selected point the kriging models are updated and thus the QD approximation
is further improved as represented in the last block at the bottom of Figure 1. The process
is iterated until any stopping condition (see Section 3.4) is satisfied. The resulting solution
based on the final approximation of the QS and QD is taken as an estimate of the unknown
model parameter.

Besides a pre-specified weight pattern the algorithm also includes an automated adjustment
of the weights according to the progress of the iterates and achieved accuracy of the QS
approximation. By this, we intend to faciliate convergence of our method. We say that the
current local phase at iteration n was successful in case the following holds

sn < sn−1, λ
max
n < λmaxn−1

and failed otherwise. We record the number successful and failed local phase iterations and as
soon as the above conditions hold for a certain number of consecutive iterations the weights
are increased by a user-defined scalar value. Otherwise the weights are decreased in the same
way. We follow the reasoning that for a sequence of increasing weights the estimated accuracy
of sequential QS approximations improves locally and thus can be trusted more and more so
that new evaluation points are selected in the vicinity of the current best estimate. This
forces the algorithm to select and evaluate new points more close to the current best estimate
in order to reduce the (approximately pointwise) simulation variability of the statistics and
hence to improve the accurary of the QS at this point. Otherwise, for descreasing weights
the algorithm tends to select points in between previously sampled points due to the higher
weighted minimum-distance term in (4.4). This implies a less beneficial impact on imroving
the QS approximation by previously evaluated points and, therefore, the algorithm follows
the ”infill“ strategy.

As another local selection criterion we propose a distance-weighted version of the trace crite-
rion, see Pukelsheim (2006). The next sample point is selected as

θn+1 = arg max
θ∈Ωg

n

wn(θ)
1

q
tr{Ĉn(θ)},

where tr{·} denotes the trace of a matrix. The criterion mostly selects points in relatively
unexplored regions of the parameter space with a relatively high approximation error of the
QS function. However, potential candidates more close to already sampled points get smaller
weights which prevents the algorithm from clustering too much around previously sampled
points. This strategy might be useful in case we rapidly want to improve the quality of the
QS approximation within a few additional simulations of the statistical model followed by a

Markus Baaske 13

root finding local search. Note that this selection criterion has a tendency to sample points
at the ”border“ of the sample space first due to the extrapolation properties of the kriging
estimators.

4.2. Select global evaluation points

The main goal of the global phase of the algorithm is to sample new evaluation points which
can be far away from previously sampled points and widely spread over the entire search
space. While the global sampling can improve the QS approximation at any point finding
possible solutions anywhere in the search space the local sampling procedure essentially is a
local search algorithm since it only explores a local region in the vicinity of the estimated
solution and improves its predicted location. Therefore the local phase cannot be used for
global optimization alone. The main reason why it is necessary to use a global sampling
procedure is that we need to investigate different local regions where low values of the QD
could turn out to be approximate solutions and the other way round, approximate roots
could vanish while new sample points are evaluated. The two sampling procedures differ in
the generation of candidate points and also in the selection of weights to achieve a balance
between global and local search which is a basis for efficient global optimization.

Let Ωg
n be the set of uniformly distributed global candidate points over D. New evaluation

points are selected from Ωg
n based on a weighted distance measure, where candidate points

with low predicted QD value obtain higher weights. In this way, the QD serves as a monitor
function to indicate promising and relatively unexplored regions. We use a strictly positive
weight function, that is, un(θ) > 0 for all θ ∈ Ωg

n, which never fully ignores any region of
the search space. The form of the weight function, which also can be found in Jakobsson,
Patriksson, Rudholm, and Wojciechowski (2010) as part of a different selection criterion, is
defined by

un(θ) = exp
{
− γ s̃n(θ)

}
, (4.5)

where 0 ≤ γ < ∞ denotes a weight parameter and s̃n denotes the normalized QD in (4.3).
We select the candidate which maximizes the weighted minimum distance

θn+1 = arg max
θ∈Ωg

n

un(θ)∆n(θ) (4.6)

for the next evaluation. The weight parameter controls the balance between a local and more
global selection of new points and the weight function is constructed such that, if γ = 0,
then un = 1 holds for all θ ∈ Ωg

n. In this case, the value of the QD is ignored and the next
sample point maximizes the miniumum distance, i. e. in a space-filling manner, from all other
samples of Sn. For parameter values γ → ∞, candidate points with relatively low values of
the QD obtain much higher weights and hence we more and more trust the approximation of
the QD. As in the local phase, we also intend to balance the sampling and, therefore, switch
between a local and more global sampling by iterating the weight parameters γ ∈ Γg in the
same way as in (4.4). In contrast to the local selection rule there is no automated update of
these weights implemented.

Note that, besides the above infill selection criteria, which keep a balance between global
and local search steps, we implicitly account for the approximation error of statistics in both
criterion functions. As a result, even if the chosen weights lead to a pure minimization of
one of the criterion functions, new candidates make a compromise between being a local

14 Quasi-likelihood with R

minimizer and improving the accuracy of the QS approximation. Thus, pure local candidates
still improve the QS function w.r.t. its approximation error.

4.3. Variance matrix estimation

Besides the kriging approach to approximate the variance matrix proposed in Baaske et al.
(2014) the package additionally offers a (weighted) average approximation. Let θ1, . . . , θn be-
long to the current sample set Sn at iteration n of the algorithm. The idea is to estimate V (θ)
for θ ∈ D by averaging over the simulated sample of covariance matrices V (θ1), . . . , V (θ1). To
this end, we estimate V (θ) by the mean sample covariance matrix E(Vi), see Dryden et al.
(2009), of sample matrices Vi = V (θi), i = 1, . . . , n, with an assumed i.i.d. scaled Wishart
distribution for Vi = V (θi). The package includes two basic types of sample average estima-
tors. The first one is based on the Cholesky reparametrization, i. e. matrix decomposition, of
sample covariance matrices, wich reads

V = LLt with L = chol(V) ∈ Rp×p, (4.7)

where L is a lower triangular matrix with real and positive diagonal elements. Then, an
estimator of E(Vi) is given by

V̄C = L̄L̄t, where L̄ =
1

n

n∑
i=1

Li (4.8)

with Li = L(θi). Alternatively, an estimator based on the matrix logarithm (see, e. g. Golub
and Loan 1996), i. e. log V = U(log Λ)U t, of sample covariance matrices V = UΛU t using the
common spectral decomposition with an orthogonal matrix U , can be obtained by

V̄L = exp

{
1

n

n∑
i=1

log Vi

}
. (4.9)

Dryden et al. (2009) empirically shows that both estimators perform well in a series of test
problems.

However, a locally weighted version of the estimated mean sample covariance matrix in (4.8)
or (4.9) might be preferable in case of an already available approximate root θ̂0 by Q(θ̂0) ≈ 0
in (2.1). Therefore, we apply a Nadaraya-Watson kernel-weighted average, see Qi and Racine
(2007), for both types of averaging matrices. In analogy to (4.8), this leads to the estimator

ṼC = L̃L̃t with L̃ =

∑n
i=1K(θi, θ̂0)Li∑n
i=1K(θi, θ̂0)

, (4.10)

where K is the multivariate Gaussian kernel

K(θ, θ̂0) = exp

{
− (θ̂0 − θ)tW (θ̂0)−1(θ̂0 − θ)

}
(4.11)

and W = Î−1 is the weighting matrix. Likewise, the weighted version of (4.9) reads

ṼL = exp{M̄} with M̄ =

∑n
i=1K(θi, θ̂0)(log Vi)∑n

i=1K(θi, θ̂0)
, (4.12)

Markus Baaske 15

where exp{·} denotes a matrix exponential. Moreover, the choice of kernel function is mo-
tivated by the idea that the asymptotic distribution of (θ̂ − θ) is (under conditions ensuring
asymptotic normality of the statistics, like ergodicity and sufficient regularity) normal with
variance I−1, see Heyde (1997, sect. 4.3). Note that the weighted variance matrices in (4.10)
and (4.12) depend on an approximate root θ̂0 in (4.11), which also must be given in order to
compute the variance estimate.

Finally, to account for the simulation error of Ẑ we add Σ̂ in (3.13) to the variance matrix
average approximation by

V̂ (θ) = V ∗ + Σ̂(θ), (4.13)

where V ∗ stands for any of the above types of matrix estimates and Σ̂ denotes the diagonal
matrix of prediction variances of Ẑ. Alternatively, a cross-validation approach (see Section
4.4) can be applied to estimate the prediction variances. The same strategy is used for the
originally proposed kriging approach to approximate the variance matrix in Baaske et al.
(2014).

4.4. Alternative estimation of prediction errors

The use of kriging models allows the construction of relatively inexpensive approximations
of the sample means of statistics compared to the effort required for evaluating the statistics
based on the statistical model simulations only. In addition, we have some readily avail-
able indication of prediction accuracy at unsampled points measured by the kriging predictor
variances. However, the main drawback of considering the kriging variance as a measure of
prediction uncertainty stems from its inherent independence of the observed values as part
of the prediction. The kriging variance, therfore, is strongly related to the spatial configura-
tion (locations and interdistances) of sampling points and thus should not be viewed as an
predictor’s precision but rather as an “precision indicator” as argued in Chiles and Delfiner
(1999, sect. 3.4.4). Moreover, the kriging variance is directly affected by the subjectively cho-
sen covariance structure which is nearly impossible to be correctly specified in practice and,
therefore, simply set beforehand assumed to be known without error. Practically, the kriging
predictor is obtained by simply plugging-in the estimated parameters of the covariance model
for the observed data which formally leads to a conditional predictor variance. Then, for
instance, the kriging variance might not reflect the total amount of uncertainty in predicting
values at unsampled points and is often underestimated (see Marchant and Lark 2007, for
a comprehensive discussion). Consequently, any algorithm for parameter estimation which
relies too much on prediction variances could be seriously misleaded.

For this reason, the package also includes an alternative strategy to predict the actual error.
We use a cross-validation (CV) approach to estimate the degree of dependence between the
spatial location of sampled points including the response of the statistical model, i. e. the value
of a statistic, and its impact on the level of accuracy for predicting at new points. In order
to assess the validity and uncertainty of kriging approximations we consider the jackknife
variance (based on a specific CV approach tailored for simulation-based kriging) as proposed
in Kleijnen and Beers (2004) as well as the estimation of the root mean squared error (RMSE),
see Jin, Chen, and Sudjianto (2002), including an option to control the computational effort.
Note that we consider the prediction variance based on kriging and CV as complementary to
one another and point out that the computation of both types does not require additional
simulations of the statistical model.

16 Quasi-likelihood with R

Let
Yn = {ȳ1, . . . , ȳn} (4.14)

denote the set of simulated sample means of statistics at parameters θ ∈ Sn for i = 1, . . . , n.
Given the sampling set Sn as in (4.1) we eliminate the ith element of Sn and obtain the CV

sample S(−i)
n of size n−1. For completeness we present the formulas for the jackknife’s pseudo-

value, jackknife variance and refer to Kleijnen and Beers (2004) for a detailed description.
The jackknife’s pseudo-value for the kriging predictor Ŷ at some parameter θ is treated as a
(kriging) mean based on the original sample Sn defined by

ỹi(θ) = nŶ (θ)− (n− 1)Ŷ (−i)(θ) ∈ R , (4.15)

where Ŷ (−i)(θ) denotes the response of the kriging model at θ with the simulated data (θi, ȳi)
removed from Sn×Yn for i = 1, . . . , n. From these values the jackknife variance at the sample
point θ is estimated by the usual sample variance

σ̃2
CV (θ) =

1

n(n− 1)

(
n∑
i=1

(ỹi(θ)− ỹ(θ))2

)
with ỹ(θ) =

1

n

n∑
i=1

ỹi(θ). (4.16)

As another measure to assess the kriging model fidelity, for example, to validate different
realizations of initial sampling designs, we can use

RMSE(θ) =

√√√√ 1

n

n∑
i=1

(
Ŷ (−i)(θ)− Ŷ (θ)

)2
(4.17)

at the sample point θ based on the CV approach mentioned before. Note that the calculation
of the jackknife variance in (4.16) and RMSE for various unsampled points in a sequential
selection procedure requires the re-estimation of covariance model parameters for each sam-

pling set S(−i)
n . In practice, this could be prohibitive as the number of overall sampling points

grows during the estimation procedure. The high computational effort is mainly due to the
number of REML estimations which must be carried out for n covariance models each based
on n−1 sampling points. If n becomes large, then the pseudo-values in (4.15) might not much
differ anymore which would lead to variances mostly due to simulation error. Therefore, we
also can apply a block jackknife scheme (see, e. g. Shao and Tu 1995, and references therein)
in addition to the delete-1 jackknife method for large n and proceed as follows. We limit the
number nc of covariance models still to fit, i. e. the number of subsets of Sn, by nc ≤ n with
maximum k sampling points deleted from Sn for each covariance model fit such that n = nck.
Then, we define the pseudo-values in analogy to (4.15) as

ŷi(θ) = ncŶ (θ)− (nc − 1)Ŷ (−i)(θ), (4.18)

where the index i with 1 ≤ i ≤ nc now refers to the block i, possibly being a one-element (if
k = 1), which consists of k sample points to be removed from Sn for the purpose of covariance
fitting and construction of the corresponding kriging predictors Ŷ (−i). Then, we proceed as in
(4.16) or (4.17) with n replaced by nc. Note that this case also includes the delete-1 jackknife
method and thus we will always refer to nc as the maximum number of blocks. Moreover, in
Meckesheimer, Booker, Barton, and Simpson (2002) the authors report that choosing k = 0.1n
or k =

√
n for the RMSE in (4.17) provides good error estimates when kriging models are used

Markus Baaske 17

for prediction and design analyses. Therefore, we choose k proportional to the overall number
of sample points n currently reached and dynamically increase k in a step by step manner
if n grows beyond a pre-defined upper limit during the estimation procedure. Nevertheless,
using prediction variances based on CV instead of kriging is obviously computationally more
demanding since, despite of the strategy explained above, additional covariance models have
to be estimated and iteratively updated during the overall estimation procedure. This is
the price the user has to pay for a possibly more realistic treatment of prediction uncertainty
which is likely to result in a more robust final model parameter estimate. Unless the structure
of the general estimation problem is relatively simple we recommend to use the CV based
approach.

4.5. Initial design validation

In order to contruct a reasonable global approximation model of the QD we show how to
assess the predictive quality and goodness-of-fit of a pilot design based on each kriging model
separately. The idea is to use the same type of prediction variance, e. g. by kriging or CV,
for the analysis of the initial design and later on during the sequential candidate selection
strategy. This ensures a consistent treatment of selecting a new candidate point without
spending too much effort on the calculation of prediction variances or performing additional
simulations.

The most commonly applied concepts are based on kriging prediction variances and resam-
pling methods such as bootstrapping and cross-validation. The reader is refered to Sacks
et al. (1989a) for an overview of various strategies empirically investigated in the context of
simulation-based optimization. Although, in principle, automated procedures are available
to choose and augment a design optimally for a global metamodelling (see e. g. Müller 2001,
sect. 6) we rather focus on which type of prediction variance best reflects the true variabil-
ity of predictions and hence the statistical model. The reasoning is, that this choice has a
certain impact on the efficiency of the sampling process towards a reasonable estimate of the
model parameter, because the prediction variance is directly involved in the selection of new
evaluation points based on one of the available criterion functions. Besides this, a two-stage
design optimization criterion, such as integrated mean squared error (see, e. g. Sacks, Welch,
Mitchel, and Wynn 1989b), could be applied.

Although, our estimation method does not require a specific initial design (as long as it inherits
a space-filling property) a carefully chosen pilot design usually results in faster convergence
of the algorithm and a less number of additional sample points. Instead of using CV for
estimating the prediction variances at candidate points (see Section 4.4) here we use the CV
approach to empirically validate the adequacy of the kriging model, for example, assumptions
either about the employed class of covariance models and the involved fitted parameters, the
initial sampling size used to build the kriging model or about the variability of simulated
statistics over the entire parameter space. To this end, we modify the CV approach in
Wackernagel (2003, sect. 11) as follows.

Let Ŷ (−i)(θi) be the value of the kriging predictor at θi ∈ S0 with the simulated data (θi, ȳi)
removed from S0 × Y0. If the average CV error (ACVE) defined by

ACVE =
1

n

n∑
i=1

(
Ŷ (θi)− Ŷ (−i)(θi)

)
u 0 , (4.19)

18 Quasi-likelihood with R

where Ŷ (θi) denotes the prediction including the full sample set S0, i = 1, . . . , n, then we say
that there is no apparent bias in predicting at left-out sample points. Otherwise a value which
significantly distinguishes from zero could represent (systematic) over- or underestimation of
the kriging prediction variances by the corresponding predictor. Due to the simulation error
of evaluating the statistics Y we estimate the observed value ȳi by the noise-free response,
see Chiles and Delfiner (1999, sect. 3.7.1), of the kriging predictor in (4.19) instead of the
simulated statistics itself as proposed in Wackernagel (2003).

Also, the magnitude of the mean squared cross-validation errors (MSE) of predicting the
statistics gives an impression on the sensitivity of the corresponding statistic Y leaving out a
sample point i of the design for estimating the corresponding sample mean value

MSE =
1

n

n∑
i=1

(
Ŷ (θi)− Ŷ (−i)(θi)

)2
. (4.20)

Further, to compare the magnitudes of the actual CV error with the one induced by the cor-
responding kriging model we define the squared standardized cross-validation error (SCVE),
which reads

SCVE(θi) =

(
Ŷ (θi)− Ŷ (−i)(θi)

)2

(σ̂2)(−i)(θi)
, (4.21)

where (σ̂2)(−i) denotes the kriging variance with the data pair (θi, ȳi) omitted from the sample
set S0 × Y0. Then, the average of the SCVE

ASCVE =
1

n

n∑
i=1

SCVE(θi) (4.22)

can be used to empirically compare kriging models based on different sampling designs and/or
covariance models w.r.t their adequacy and validity of covariance parameter estimates. If we
have ASCVE u 1, then the CV errors approximately equal on average the ones predicted by
the kriging variance. Given a particular pilot design this suggests a good match of both types
of errors and hence the kriging model appropriately models the simulation output. Otherwise,
if ASCVE � 1, i. e. being significantly greater than one, we would be in favour for using
CV errors for a more realistic treatment of the prediction uncertainty during the sequential
sampling procedure and, in case of ASCVE � 1, prefer kriging prediction variances. If the
initial design does not meet the users requirements up to some level of adequacy according
to (4.22) or the approximate unbiasedness property (4.19), then we can easily augment the
current design by the function augmentLHS() from the package lhs (Carnell 2016) or by
multiDimLHS() as part of our package. In this case, additional simulations at these newly
generated design points hopefully provide more information and might improve the quality
of the initial kriging model. These steps could be repeated until the user is satisfied with the
results. Note that this procedure is used to assess the predictive performance of each kriging
model separately since these are based on individual estimated covariance functions.

Apart from this, the package also includes functions to explicitly evaluate the kriging vari-
ances, e. g. varKM(), and predicted CV errors, like crossValTx(), of each kriging model.
These functions are intended to provide a basis for a comprehensive analysis of each kriging
model in order to apply other (user-defined) approaches to improve the predictive quality
depending on the (simulated) data and initial design.

Markus Baaske 19

4.6. Numerical consistency of solutions

If the algorithm terminates successfully with an approximate root θ̂, we employ the method
proposed in Heyde (1997, sect. 13.3.3) for examining its consistency as a solution to the
approximating QS. The same principles apply having found multiple roots as candidates of
the true model parameter.

Let Q̂′ denote the matrix derivative of the QS vector, i. e. the observed quasi-information (see
Heyde 1997, sect. 13.2). We assume that Q̂′(θ) ∼ Eθ0(Q̂′(θ)) in probability for θ ∈ Θ. Then,
if θ̂ is a consistent estimator of θ0,

Eθ̂(Q̂
′(θ̂))−1Q̂′(θ̂) ∼ Id (4.23)

in probability, where Id is the q × q identity matrix. Since Q̂ is a standardized QS for which
the score property

Eθ̂(−Q̂
′) = Eθ̂(Q̂Q̂

t), (4.24)

see Heyde (1997, sect. 13.3.1), holds by (2.3) and (2.4), we identify θ̂ as the correct root if
the ratio Î(θ̂)−1Q̂′(θ̂) approximately equals the identity matrix. For this, we first check the
positive definiteness of −Q̂′(θ̂) for θ̂ being a consistent estimator of the true parameter value
θ0, which, in case of ML estimation, corresponds to a maximum of the likelihood function.
Let

M = Î(θ̂)−1Q̂′(θ̂),

then we can inspect (4.23) in terms of its numerical properties by:

detM = |1− det(M)|,
maxM = max

1≤i≤q
{|1−Mii|}, (4.25)

trM = |1− tr{M}/q|.

For θ̂ to be a consistent root of Q̂(θ̂) (at least numerically) we require to hold detM < τ1,
maxM < τ2 or trM < τ3, where τk are chosen constants sufficiently small and k = 1, 2, 3. In
case of multiple roots it is reasonable to choose the one for which (4.25) yields smallest values.
Finally, a goodness-of-fit test (see Section 4.7) can be applied in order to select the best root
in a probabilistic sense.

4.7. Monte Carlo hypothesis testing

We implement a Monte Carlo (MC) hypothesis test (see, e. g. Ripley 2009, sect. 7.1) to
assess the goodness-of-fit of the user-defined statistical model w.r.t. to the estimated model
parameter. Following our general assumption that we only have a single or a few raw data
(i. e. real observations Y = y) of identical situations available, while simulation replications
obtained from the statistical model are relatively inexpensive to generate, we can estimate
the variability of the model outcome (including any function of the model parameter) much
better than we could in case of only measuring the real outcome of the observed statistics.
Therefore, independent realizations of the simulated model, where the number of simulations
is only limitted by the computational budget, allow us to assess the model variability and

20 Quasi-likelihood with R

hence the contruction of a MC hypothesis test. The (conceptual) null hypothesisis is whether
the data, e. g. observed values of the statistics, can be explained by the outcome variability
of the model simulations.

The basic idea is to derive the MC version of the hypothesis test as proposed in Heyde (1997)
based on the simulated QS estimating function. Suppose that we have the following QL
estimator θ̂, that is, a solution to the approximating quasi-score, Q̂(θ̂), in our setting. We
consider testing the following null hypothesis

H0: θ̂ = θ0

against the alternative

H1: θ̂ 6= θ0,

where θ0 is the true model parameter. We either use the QD or some version of the MD
as a test statistic which we denote by S = S(θ,X). Since S is random as a function of the
(observed) model outcome x = X and the parameter θ, in our setting, it can only be evaluated
by simulating the statistical model. As an approximation to the so-called efficient score
statistic (Heyde 1997) it does not involve the evaluation of an objective function, for example,
a likelihood. Under appropriate conditions the efficient score statistic approximately follows
a chi-squared distribution, χ2

q , with q degrees of freedom (see, e. g. Heyde 1997, sect. 9.2)
and hence can be used to set up a hypothesis test about the true value θ0. This test only
depends on the restricted class of parameters under the null hypothesis and, therefore, only
requires the test statistic to be evaluated at θ̂. However, the true probability distribution of
S is unknown and follows the ”randomness“ generated by the statistical model given the data.
Therefore, we construct a MC test analogue of the efficient score test as follows.

We proceed in three steps (see, e. g. Efron and Tibshirani 1994, pp. 53-56) in order to estimate
the corresponding P -value:

1. simulate a large sample X∗1 , . . . , X
∗
m ∼ Pθ̂ of m independent observations of the statis-

tical model under the null hypothesis,

2. re-estimate the model parameters θ̂∗1, . . . , θ̂
∗
m given X∗j , j = 1, . . . ,m,

3. compute the test statistics sj = Sj , where Sj = S(θ̂∗j , X
∗
j), for each jth model outcome

Suppose that sobs = s(θ̂, x) is the observed value of the test statistic given the data, i. e.
y = T (x), and the estimated model parameter θ̂. Then, we obtain a MC estimate of the
(upper tail) P -value of the test statistic by

P̂ = P̂(S ≥ sobs) =

∑m
j=1 1[sobs,∞){sj}+ 1

m+ 1

as the proportion of values sj , j = 1, . . . ,m, based on the simulated data X∗j under the null
hypothesis, exceeding the observed value of the test statistic. If the observed statistics can be
appropriately fitted by the statistical model, the value sobs will not be significantly different
from the simulated values of the test statistic. Further, in our implementation, we also allow
the test statistic to be different from the criterion function which was first used to estimate
the model parameter.

Markus Baaske 21

Note that, to be consistent, we re-estimate θ̂∗ (given the simulated observed statistics) by
the same procedure and choice of criterion function as before when estimating the model
parameter θ̂. The difference is that we merely use model realizations already generated for
the estimation of θ̂ and by this only require additional simulations at θ̂ in order to compute the
test statistic for each replicated data, i. e. model outcome. Obviously, using additional model
simulations during the re-estimation would enforce the algorithm to produce more ”precise“
parameter re-estimates. However, such procedure would render our test infeasible since then
the computational effort would be comparable to a full-fledged simulation study. The point
is, if an estimate of the model parameter was found depending on the budget for simulating
the statistical model, we assume that the search space is sufficiently explored by additional
sample points up to a certain user-specified accuracy. Hence, in practice, the re-estimated
paramters should then change not too much compared to using additional sample points and
simulations. Finally, since we implicitely estimate the sampling distribution of θ̂ during the
test, we can also calculate the standard error of the estimated parameter and derive further
error measures based on the inverse QI matrix, which we call predicted standard errors (see
the R examples below).

Optionally, this test procedure is also sequentially employed when promising local minimizers
of the criterion function are visited during the local phase of the algorithm. Suppose that
θ̂ is a local minimizer of the criterion function, then we use this test in order to assess the
plausibility of θ̂ being a potential root of the corresponding quasi-score vector given the
data X = x. New observations (x∗1, . . . , x

∗
m) are simulated w.r.t. to θ̂ and the algorithm

re-estimates the approximate roots θ̂j for each observation x∗j . If

s(θ̂;x) ≤ F̂−1
m (1− α) (4.26)

holds, where F̂m denotes the empirical c.d.f. of s(θ̂1;x∗1), . . . , s(θ̂m;x∗m) related to the test
statistic S, then θ̂ is accepted as an approximate root at significance level α. In this case the
algorithm stays in its local phase and continues sampling around the current root according to
its asymptotic variance (measured by the inverse of the predicted quasi-information) and uses
the additional simulation results to improve the current kriging approximations. Otherwise,
the last evaluation point is used as a starting point for next local searches which mimics a
random multistart type minimization of the criterion function over the next iterations. This
approach also has the potential to escape regions where the criterion function value is quite
low and, however, is not considered trustworthy with regard to the empirical quantile (4.26)
of the test statistic.

We can also derive a statistical stopping condition (see Section 3.4 based on the above pro-
cedure. Since the variance of the QL estimator is under certain conditions asymptotically
equivalent to the inverse of the quasi-information in (2.4) we define the relative efficiency
(EF) in spirit of the coefficient of determination from linear regression by

EF =

∣∣∣∣∣∣1−
[
Î(θ̂)−1

]
ii[

1
m

∑m
j=1(θ̂ − θ̂j)(θ̂ − θ̂j)t

]
ii

∣∣∣∣∣∣ (4.27)

for the comparison of the empirical estimation error of θ̂ ∈ Rq, i = 1, . . . , q, with its predicted
error (measured by the inverse of the quasi-information matrix) and stop as soon as both
errors deviate less than a user-defined fraction from each other for a specified number of

22 Quasi-likelihood with R

consecutive iterations. Further stopping conditions can be found in the R manual of the
function qle.

5. Estimation with qle in R

The package includes functions for simulating a user-specified statistical model, estimating the
unknown model parameter and performing a goodness-of-fit hypothesis test. Several options
for parameter estimation are available which allow to choose different criterion functions
as well as types of variance matrix approximations and prediction variances of the kriging
estimator. Users can choose among different (initial) sampling designs, best candidate selec-
tion strategies and local or global (derivative free or gradient-based) minimization methods.
Among these, the quasi-scoring algorithm estimates the model parameter as an approximate
root of the QS vector or by a stationary point of one of the criterion functions proposed
including simple bound constraints. Finally, the estimated model parameter can be tested by
a Monte Carlo approach to hypothesis testing.

Apart from these methods related to parameter estimation, the package also offers access to
low level functions, such as estimating the parameters of a particular covariance model (by
the restricted maximum likelihood method) for predicting the sample means of the statistics
or approximation of the variance of the statistics by kriging. We allow for different covariance
models and specify how to incorporate the simulation variances of the statistics as so-called
local or global nugget variances for each corresponding covariance model separately. We
provide functions to inspect their impact on the predictive quality mainly by comparing
individual prediction variances based on the CV approach and kriging models. This can be
seen as a preliminary step to construct a reasonable pilot design for parameter estimation
which then is sequentially improved.

5.1. Main functions

We start with a short overview of the main functions and exemplify the practical workflow.
Note that all examples presented in this Section are also available as separate R source files.

First, the user must define a simulation function (simulating a given statistical model) which
expects a numeric vector of statistical model parameters as its first argument and returns
a numeric vector of the user-defined statistics in order to characterise the model outcome.
Further arguments can be passed by ‘. . . ‘ for all functions of the package where the simulation
function is required as an input argument. An explicit naming of the parameter values or
statistics is not required. Without supplied names we use the naming convention T1, T2,
. . . for the first, second and so on, statistic.

The main function for estimation is qle() which minimizes one of the criterion functions (e. g.
quasi-deviance or different versions of the Mahalanobis distance), samples new evaluation
points and returns an object of class qle. Other functions, for example, qscoring() or
searchMinimizer(), only search for a root of the QS vector or, respectively, a minimizer of
the chosen criterion function without using additional simulations of the statistical model.

Typically, the following functions from the package have to be called in the order of appearance
in order to initialize the estimation method:

1. multiDimLHS(), generate initial design of space-filling points,

Markus Baaske 23

2. simQLdata(), simulate the statistical model at these design points,

3. setQLdata(), collect simulation results for QL estimation,

4. fitSIRFk(), fit a covariance model (‘sirfk‘ by default); alternatively, each statistic
could also be modelled by different covariance functions which then would require a
manual setup (see Section 5),

5. QLmodel(), construct the QL approximation model of class QLmodel, that is, store
the covariance models of statistics, the observed statistics, the initial design points,
simulated values of the statistics as well as several options for local optimizations and
parameter estimation.

The last three functions are wrapped up in a single function call by getQLmodel() for con-
venience, which also returns an object of class QLmodel. For reasons of simplicity, the initial
design can also be generated by simQLdata() and stored in the returned object. In addi-
tion, there are a couple of built-in convenience functions which help to analyse the predictive
quality of each covariance model, for example, using kriging predictions of the sample means
of the statistics with the help of predictKM(), evaluating the corresponding kriging or CV
based prediction variances by varKM() or, respectively, crossValTx().

5.2. Options for parallel processing

The package provides two built-in types of parallel processing including the stochastic model
simulations based on the parallel package. Both types can be combined in a HPC environment
using a number of compute nodes or multiple CPUs of a single host. First, computations can
be run in parallel by spawning the computations to multiple CPU cores (see mclapply3) or
distributing the computations (including model simulations) to different compute nodes of
a HPC using a number of local CPUs at each node as a kind of nested parallel processing.
The user can pass any valid cluster object of class "MPIcluster","SOCKcluster","cluster"
which supports calling parallel::parLapply() to the qle and others of the package. Note
that by default computations are processed sequentially using a single CPU/core. Please see
the manual for details of all parallel options.

5.3. M/M/1 queue

As an introductory example we consider the following single-server queueing system denoted
as M/M/1 (see, e. g. van Beers and Kleijnen 2003). Let N represent the random variable
”number of customers“ in the system at steady state. Then N is geometrically distributed
with success parameter 1− ρ and

E[N] =
ρ

1− ρ
is the expectation of N as a function of ρ < 1. Hence the parameter of interest for estimation
is θ = ρ, which can be interpreted as the fraction of time the server is working, and the
variance of N is given by

Varθ(N) =
ρ

(1− ρ)2
.

3Note that mclapply is not available on Windows-based platforms, however, then run sequentially by
lapply.

24 Quasi-likelihood with R

Let y = (y1, . . . , yn)t be the observed number of customers at n different time points where we
use the sample mean ȳ =

∑n
i=1 yi/n as the summary statistic for estimation by our method.

Thus from each replication of the statistical model we record the average number of customers
in the system which, following the reasoning in Section 3, is approximated by a kriging surface,
see Figure 2. We start by setting the options for parallel processing,

R> options(mc.cores=8L)

R> options(qle.multicore="mclapply")

R> RNGkind("L'Ecuyer-CMRG")
R> set.seed(1326)

and define the statistical model which practically leads to the simulation function simfn

shown below. For estimation of the parameter ρ by our approach we fix the number of time
points of observations to n = 100.

R> cond <- list("n"=100)

R> simfn <- function(tet,cond){

+ mean(rgeom(cond$n,prob=1-tet[1]))

+ }

The function returns the average the number of customers in the system at steady state.
Next, we set the lower and upper bounds of the parameter search space,

R> lb <- c("rho"=0.05)

R> ub <- c("rho"=0.95)

and sample the initial design points for constructing the approximation of the criterion func-
tion (including the summary statistic). At each design point nsim simulations are used to
estimate the sample mean of the statistic.

R> nsim <- 10

R> X <- multiDimLHS(N=9,lb=lb,ub=ub,

+ method="maximinLHS",type="matrix")

R> sim <- simQLdata(sim=simfn,cond=cond,nsim=nsim,X=X)

We set the ”real“ observation of the statistic Y = y to obs=1 corresponding to the parameter
ρ = 0.5. In this example the variance of Y is approximated by the average of the matrix loga-
rithm of the sample variance matrices at each design point. We obtain the QL approximation
model by

R> qsd <- getQLmodel(sim, lb, ub, obs=c("N"=1),

+ var.type="wlogMean",verbose=TRUE)

and, as a first crude estimate of the model parameter, we apply the quasi-scoring iteration
without using further simulations.

R> S0 <- qscoring(qsd,x0=c("rho"=0.8))

R> print(S0)

Markus Baaske 25

Local method:

`qscoring`

Quasi-deviance:

4.1300e-14

Start Estimate Quasi-score

1 8.0000e-01 5.1500e-01 -7.1700e-06

Iterations............ 4

Status................ 1 (QFS_SCORETOL_REACHED)

Optimization stopped because score_tol was reached.

The function returns an estimated root already quite close to the ”true“ one. However, we can
improve the current estimate sampling maxeval additional points each using at most nsim

simulations. We choose the score criterion, see (4.4), for selecting the next evaluation points
equally weighting the interdistances to previous sample points (as filling in the gaps) and the
criterion function value by weights=0.5. As a local search, respectively, root finding method,
we apply the quasi-scoring iteration and, in case of non-convergence, switch to the method
bobyqa or even direct as a global search method directly appplied to the criterion function.
Note that we also test a found minimizer whether it could be an approximate root of the
quasi-score vector.

R> OPT <- qle(qsd,simfn,cond=cond,

+ global.opts = list("maxeval"=5, "NmaxLam"=5),

+ local.opts = list("nextSample"="score","weights"=0.5,

+ "ftol_abs"=1e-4, "lam_max"=1e-5),

+ method = c("qscoring","bobyqa","direct"), iseed=1326)

Only a few iterations are needed to improve the last estimate.

R> OPT

Quasi-deviance:

1.272e-08

Estimate:

rho

5.0570e-01

Convergence: maximum evaluations reached.

26 Quasi-likelihood with R

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

ρ

y

Number of customers in the system
Expected number at steady state
Kriging approximation

0.0 0.2 0.4 0.6 0.8 1.0

−
10

0
10

20
30

40
50

ρ

quasi−deviance
quasi−score
sample points
approximate root
additional samples

Figure 2: M/M/1 queue: number of customers (left) and quasi-deviance, respectively, quasi-
score approximation (right). All approximations shown are based on the same set of evaluation
points.

maxeval

5.0000e+00

0.0 0.2 0.4 0.6 0.8 1.0

−
10

0
10

20
30

40
50

ρ

quasi−deviance
quasi−score
sample points
QL estimate

Figure 3: Final quasi-deviance and quasi-score function approximation after adding five new
evaluation points.

The results of the consistency criteria (see Section 4.6) are given below.

R> checkMultRoot(OPT,verbose = TRUE)

Markus Baaske 27

rho minor det value |score_max| lamI_min lamIm_max

par * 0.5057 0 0.0003404 3.422 0.003456 -922.7 0.01737

Both the predicted, that is, the expected quasi-information matrix and its (numerically eval-
uated) observed analogue show a good aggreement. The results suggest a consistent root of
the quasi-score and thus a plausible estimate of the unknown parameter.

Further, we compute the prediction of the summary statistic given the final design X and
sample average values Tstat (at these points)

R> X <- as.matrix(OPTqsdqldata[,1])

R> Tstat <- OPTqsdqldata[grep("mean.",names(qsd$qldata))]

R> predictKM(OPTqsdcovT,c("rho"=0.5),X,Tstat)

mean.T1

[1,] 0.9776

Since the joint density function of the (simulated) observations y is known we can derive the
maximum likelihood estimator (mle), which reads

ρ̂mle = 1− 1

1 + ȳ
(5.1)

as the solution of Fisher‘s score function,

u(ρ) = n

(
1

1− ρ
− ȳ

ρ

)
= 0 ,

and belongs to the exponential family of distributions in linear form. In this particular case
the score function from MLE is identical to the quasi-score function,

Q(ρ, ȳ) =
1

(1− ρ)

(
ρ

n(1− ρ)2

)−1(
ȳ − ρ

1− ρ

)
= u(ρ) . (5.2)

Further, since the variance of ρ̂mle is given by

Var(ρ̂mle) =
ρ̂(1− ρ̂)2

n
,

the same holds for the quasi-information matrix and Fisher‘s information matrix, which reads

I(ρ) =
1

(1− ρ)4

(
ρ

n(1− ρ)2

)−1

=
n

ρ(1− ρ)2
= Var(ρ)−1 = Imle(ρ).

Therefore, compared to the maximum liklihood method, the resulting estimation error by
quasi-likelihood estimation is due to the inherent simulation variance and approximation
error of ȳ induced by kriging the statistics. This effect can be best exemplified by a short
simulation study as shown next.

We randomly generate observations at the ”true“ parameter ρ = 0.5.

R> tet0 <- c("rho"=0.5)

R> obs0 <- simQLdata(sim=simfn,cond=cond,nsim=100,X=tet0)

28 Quasi-likelihood with R

Method MSE(ρ̂) Var(ρ̂)

qle 0.00135 0.00112
mle 0.00133 0.00124
Score test 0.00135 0.00121

Table 1: Empirical mean squared error (MSE) and average variance V ar of the re-estimated
parameters for 1000 observations using the quasi-likelihood approach and maximum likelihood
method compared to the results of the Score test without new evaluation points.

and compute the empirical mean squared error (MSE) of the maximum likelihood estimates
and the average variance over all estimated variances denoted by V ar.

R> mle <- do.call(rbind,

+ lapply(obs0[[1]],function(y,n){

+ tet <- 1-1/(1+y[[1]])

+ c("mle.rho"=tet,"mle.var"=(tet*(1-tet)^2)/n)

+ }, n=cond$n))

R> x <- mle[,1]-tet0

R> mle.var <- c(sum(x^2)/length(x),mean(mle[,2]))

Given the generated set of observations obs0 we now estimate the model parameter for each
observation by quasi-likelihood

R> OPTS <- parLapply(cl,obs0[[1]],

+ function(obs,...) {

+ qle(...,obs=obs)

+ },

+ qsd=qsd,

+ sim=simfn,

+ cond=cond,

+ global.opts=list("maxeval"=10,"NmaxLam"=10),

+ local.opts=list("nextSample"="score","weights"=0.5,

+ "ftol_abs"=1e-4,"lam_max"=1e-5,

+ "useWeights"=TRUE),

+ method=c("qscoring","bobyqa","direct"))

R> # get results

R> QLE <- do.call(rbind,

+ lapply(OPTS,

+ function(x) {

+ c("qle"=x$par,"qle.var"=1/as.numeric(x$final$I))

+ }))

R> y <- QLE[,1]-tet0

R> # MSE and average estimated variance of the parameters

R> qle.var <- c(sum(y^2)/length(y),mean(QLE[,2]))

Table 1 summarises the empirical and predicted estimation variances resulting from the above

Markus Baaske 29

simulation study. For both methods the predicted average variances as shown by V ar and
the empirical MSEs compare well.

Finally, we apply the MC goodness-of-fit test (see Section 4.7) of the estimated parameter
based on the observations obs0 taken from the simulation study.

R> Stest0 <- qleTest(OPT,sim=simfn,cond=cond,obs=obs0,cl=cl)

R> print(Stest0)

Call:

qleTest(OPT, sim = simfn, cond = cond, obs = obs0, cl = cl)

Coefficients:

Estimate Std. Error RMSE Bias Mean

rho 0.50565 0.036677 0.036701 -0.001756 0.5039

Bootstrap Score-test:

s value Pr(>s)

1.2724e-08 1.31870e-01

Average quasi-score:

[1] -0.001153

Predicted Std. Errors:

Average Estimate EF

rho 3.47880e-02 3.32060e-02 9.52200e-02

The result of the Score test using the same observations of the simulation study shows a good
match of the empirical and predicted error measures. Note that the errors resulting from
the Score test are not directly compareable with the ones shown in Table 1 since the test
procedure does not use new evaluation points (and thus additinoal simulations of the model)
during the re-estimation of the parameter given the simulated observations. Instead, it is
solely based on the fixed design of evaluation points stored in the estimation results OPT.

5.4. Estimating the parameters of a normal distribution

This example shows how to estimate the mean and standard deviation (µ, σ) of a gaussian
random variable. Of course, we do this rather for pedagogical benefits since the method
of choice is ML. However, its simplicity allows us to demonstrate the basic steps which are

30 Quasi-likelihood with R

required to initialize the method and also apply for other more complex parameter estimation
problems in general. Besides this, it helps to understand why the method might fail in
situations where the chosen summary statistics are less informative.

We define a simulation function which simply draws 10 random numbers at parameter θ =
(µ, σ) using the median and the mean absolute deviation (from the median) as our informative
statistics to characterise the model outcome.

R> # use a local cluster

R> cl <- makeCluster(8L)

R> clusterSetRNGStream(cl,1234)

R> # simulation function

R> simfunc <- function(pars) {

+ x <- rnorm(10,mean=pars["mu"],sd=pars["sigma"])

+ c("T1"=median(x),"T2"=mad(x))

+ }

The simple box constraints below, lb and ub, define the parameter search space as lower and,
respectively, upper bounds of the unknown parameter of equal length.

R> lb <- c("mu"=0.5,"sigma"=0.1)

R> ub <- c("mu"=8.0,"sigma"=5.0)

We choose a maximin design as a pilot design in order to construct the initial approximation
of the QS vector using the quasi-deviance as a criterion function. We initially sample N design
points and simulate nsim times at each point.

R> sim <- simQLdata(sim=simfunc,

+ nsim=10,N=8,lb=lb,ub=ub,method="maximinLHS")

R> # reset number of simulations (10 x 10)

R> attr(sim,"nsim") <- 100

Although, in this example, we could simulate an observed value obs of the statistics we use
the population mean and standard deviation in order to exemplify the achievable precision of
the method as if the statistics could have been observed without error.

R> obs <- structure(c("T1"=2,"T2"=1),class="simQL")

Then, using the default values, we set up the approximation model by

R> qsd <- getQLmodel(sim,lb,ub,obs,var.type="wcholMean")

and start searching from the parameter x0 for a root of the QS vector as a crude first estimate
of the model parameter.

R> QS <- qscoring(qsd, x0=c("mu"=5,"sigma"=3.0))

R> print(QS)

Markus Baaske 31

Local method:

`qscoring`

Quasi-deviance:

2.4650e-15

Start Estimate Quasi-score

1 5.0000e+00 1.8570e+00 -3.7250e-08

2 3.0000e+00 1.2350e+00 3.8980e-09

Iterations............ 3

Status................ 1 (QFS_SCORETOL_REACHED)

Optimization stopped because score_tol was reached.

The estimated root is already quite satisfactory. However, in practice we would try to improve
the current estimate and therfore apply the main estimation function qle(). The function
alternates between sampling new evaluation points and, in our case, minimizing the quasi-
deviance for monitoring the estimation progress. The weights for generating candidate points
are automatically adjusted starting at the given weight 0.5. As before, we test each newly
found minimizer whether it could be an approximate root.

R> OPT <- qle(qsd,

+ simfunc,

+ nsim=20,

+ global.opts=list("maxeval"=50),

+ local.opts=list("lam_max"=1e-3,"weights"=0.5,

+ "useWeights"=FALSE,"test"=TRUE),cl=cl)

R> OPT

Quasi-deviance:

1.984e-14

Estimate:

mu sigma

2.0110e+00 1.1230e+00

Convergence: maximum evaluations reached.

maxeval score

5.0000e+01 2.4622e-07

32 Quasi-likelihood with R

1 2 3 4 5 6 7 8

1
2

3
4

5

µ

σ

 1

 2

 3

 4

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 2
2

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38
 39

 39

 40

 40

 41
 42

 43
 44

 45
 46

 47
 48

 49
 50

 51
 52

 53
 54

 55

1 2 3 4 5 6 7 8

1
2

3
4

5

µ
σ

 5

 10

 1
0

 1
5

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 7
5

 8
0

 8
5

 9
0

 9
5

 100

 105

 110

 115

 120

 125

 1
30

 1

35

 1
40

 1

45

initial design points new sample points estimated parameter true parameter

Figure 4: Quasi-devianve level plots: based on the initial design (left) and using additional
evaluation points (right).

Based on the criteria in (4.25) we can assess the (numerical) consistency of the estimated
parameter stored in OPT$par

R> checkMultRoot(OPT,verbose=TRUE)

mu sigma minor det value |score_max| lamI_min lamIm_max

par * 2.011 1.123 0 5.797e-06 1.642 2.465e-07 -4.809 0.001027

where the variable OPT$qsd includes the final QL approximation model and can be used for
restarts of the algorithm. The above results clearly show the (numerical) convergence of the
current run. Further, the following estimate of the sample variance matrix of the statistics
w.r.t. the estimated parameter shows a good match compared to its (weighted) sample average
approximation by Sigma.

R> obs0 <- simQLdata(simfunc,X=OPT$par,nsim=1000,mode="matrix")[[1]]

R> var(obs0)

T1 T2

T1 0.170966 0.001436

T2 0.001436 0.143602

R> attr(OPT$final,"Sigma")

T1 T2

T1 0.195086 -0.003486

T2 -0.003486 0.148517

Markus Baaske 33

R> stopCluster(cl)

5.5. Fitting a Matérn cluster point process model

We fit a stationary Matérn cluster process to the redwood point pattern data, see the vignette
of package spatstat (Baddeley et al. 2005), once by the classical method of minimum contrast
and our simulated QL estimation approach. The former estimates the model parameter
θ = (κ,R, µ) of the point process model by minimising the discrepancy between the theoretical
K-function Kθ(r) and its empirical estimate K̂(r) for any radius r over some range [a, b]:

D(θ) =

∫ b

a

∣∣∣Kθ(r)
q − K̂(r)q

∣∣∣p dr (5.3)

where 0 ≤ a < b, and p, q > 0 are fixed indices. For the latter, we use the empirical intensity
λ̂ (of the whole point process) and K̂(r) with values r = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 as our set
of summary statistics.

First, we load the data and fit the model (to the data) by the method of minimum contrast,

R> data(redwood)

R> fitMat <- kppm(redwood, ~1, "MatClust")

which gives the estimated parameters

R> fitMat$modelpar

kappa R mu

24.55790 0.08654 2.52465

R> RNGkind("L'Ecuyer-CMRG")
R> set.seed(297)

To initialize the QL estimation method we proceed as before. We define the function which
returns the summary statistics:

R> simStat <- function(X,cond){

+ x <- Kest(X,r=cond$rr,correction="best")

+ x <- x[[attr(x,"valu")]]

+ x <- x[x>0]

+ if(anyNA(x) || any(!is.finite(x))) {

+ warning(.makeMessage("`NA`, `NaN` or `Inf` detected.","\n"))

+ x <- x[!is.nan(x) & is.finite(x)]}

+ return(c(intensity(X),x))

+ }

as well as the function which first simulates the process model and then returns the values of
the employed statistics

34 Quasi-likelihood with R

R> simClust <- function(theta,cond){

+ X <- rMatClust(theta["kappa"],theta["R"],theta["mu"],win=cond$win)

+ simStat(X,cond)

+ }

In addition, we set the number of simulation replications, the size of the initial experimental
design, the condition object storing the observation window and the fixed values of radii r for
the evaluation of K̂(r).

R> nsim <- 50

R> Nsample <- 12

R> cond <- list(win=owin(c(0, 2),c(0, 2)),

+ rr=seq(0,0.3,by=0.05))

The parameter space is defined by the following lower and upper bound vectors.

R> lb <- c("kappa"=20,"R"=0.01,"mu"=1)

R> ub <- c("kappa"=30,"R"=0.25,"mu"=5)

We initialize the workers of a local cluster (FORK) which also applies in more general cases
of parallel environments in principle.

R> cl <- makeCluster(8L)

R> clusterSetRNGStream(cl)

R> clusterCall(cl,fun=function(x) library("spatstat", character.only=TRUE))

R> clusterExport(cl=cl,varlist=c("simStat"), envir=environment())

We evaluate our chosen set of summary statistics given the observed point pattern:

R> obs0 <- simStat(redwood,cond)

and simulate the process model for the first time at randomly generated design points.

R> sim <- simQLdata(sim=simClust,cond=cond,nsim=nsim,

+ method="randomLHS",lb=lb,ub=ub,N=Nsample,cl=cl)

Putting all together we then construct the QL model.

R> qsd <- getQLmodel(sim,lb,ub,obs0,criterion="qle",

+ var.type="kriging",verbose=TRUE)

Here we use the kriging approach to approximate the variance matrix estimate of the summary
statistics. In general, using the cross-validation (CV) approach for the evaluation of the
prediction errors seems to result in more reliable parameter estimates by our method if we use
the kriging approach to estimate the variance matrix. Therefore we recommend to analyse
the prediction errors of the summary statistics first and, if appropriate, use the CV-based
variances instead of those derived from kriging. For this, we first re-fit the leave-one-out
cross-validation models of the sample means of the statistics.

Markus Baaske 35

R> cvm <- prefitCV(qsd, reduce=FALSE, verbose=TRUE)

Then we check whether there is any significant bias (e. g. over- or underestimation) in es-
timating the sample means of the statistics Y by kriging the values at each left-out sample
point and averaging over all of them as shown in (4.19).

R> crossValTx(qsd, cvm, type = "acve")

mean.T1 mean.T2 mean.T3 mean.T4 mean.T5 mean.T6 mean.T7

[1,] 1.586 0.001856 0.0009677 -0.001787 -0.0005853 0.003232 0.003799

The first statistic (i. e. the empirical intensity) might suffer from systematic overestimation.
Therfore we compare the different estimations of each statistic by the their magnitudes of the
mean squared CV error:

R> crossValTx(qsd, cvm, type = "mse")

mean.T1 mean.T2 mean.T3 mean.T4 mean.T5 mean.T6 mean.T7

[1,] 127.2 0.0001297 4.133e-05 0.0001738 3.096e-05 4e-04 0.0005628

Again, the first one is more sensitive to left-out sample points of the initial design compared
to the other statistics. This indicates that the corresponding kriging model might be less
appropriate for some reasons, e. g. insufficient number of observations, available sample points
or because the chosen type of covariance function does not appropriately characterise the
simulation outcome. Since the true reason is extremely hard to track down in practice we
do not go into details here. However, we can compare the prediction error of the statistics,
predicted by the corresponding kriging models, with the actual error by the CV approach.

R> crossValTx(qsd, cvm, type = "ascve")

mean.T1 mean.T2 mean.T3 mean.T4 mean.T5 mean.T6 mean.T7

[1,] 0.9265 0.009874 0.005495 0.01018 0.002275 0.0406 0.05949

For values close to one the actual error (estimated by the CV approach) would be equal on
average to the error predicted by the corresponding kriging model. In this example the values
above are quite close to zero for each statistic which indicates that the kriging variances
rather overestimate the actual error on average over all sample points based on the initial
design according to the criterion in (4.22). However, using the the maximum of both types of
prediction errors ensures that we account for the prediction uncertainty due to the design in a
worst-case scenario while sampling new candidate points and searching for local minimizers.

R> attr(cvm,"type") <- "max"

A first run of a global search leads to the following result. x0:

R> x0 <- c("kappa"=21,"R"=0.08,"mu"=2.5)

R> searchMinimizer(x0,qsd,method="direct",cvm=cvm,verbose=TRUE)

36 Quasi-likelihood with R

Using method: direct...

Successful minimization by: direct [restarted] (status = 5)

Local method:

`direct`(restarted)

Quasi-deviance:

5.7700e-04

Start Estimate Quasi-score

1 2.1000e+01 2.8250e+01 -1.3100e-04

2 8.0000e-02 2.5000e-01 -2.7540e-03

3 2.5000e+00 2.5190e+00 -2.4820e-03

Iterations............ 1000

Status................ 5 (NLOPT_MAXEVAL_REACHED)

Optimization stopped because maxeval (above) was reached.

We could also apply the quasi-scoring iteration using the following stopping conditions.

R> opts <- list("xscale"=c(10,0.1,1),"ftol_abs"=1e-4,"score_tol"=1e-4)

R> qscoring(qsd,x0,opts=opts,cvm=cvm)

Local method:

`qscoring`

Quasi-deviance:

1.4630e-01

Start Estimate Quasi-score

1 2.1000e+01 2.1000e+01 4.7390e-01

2 8.0000e-02 8.0000e-02 1.2850e+01

3 2.5000e+00 2.5000e+00 2.3620e+00

Iterations............ 10

Status................ 10 (QFS_XTOL_REACHED)

Optimization stopped because xtol_rel was reached.

Here both methods find a solution to the QS vector where the latter ends up in a local mini-
mizer according to the convergence code. In general, the quasi-scoring iteration is practically
more efficient than the exhaustive global search by the method direct (see package nloptr).

Markus Baaske 37

Since the initial approximation of the QS vector results in quite promising parameter esti-
mates we now start the main estimation routine. We use the criterion in (4.4) to select new
candidates for evaluation, nextSample=”score”, a maximum of maxeval evaluations and
the quasi-scoring iteration as the primary local minimization routine or root finding method
respectively. In addition to new evaluation points, we also perform a goodness-of-fit test,
setting test=TRUE, of every local minimizer and use the corresponding simulation results for
improving the current kriging approximations. The estimation is started by:

R> OPT <- qle(qsd, simClust, cond=cond,

+ qscore.opts = opts,

+ global.opts = list("maxiter"=10,"maxeval" = 20,

+ "weights"=c(50,10,5,1,0.1),

+ "NmaxQI"=5,"nstart"=100,

+ "xscale"=c(10,0.1,1)),

+ local.opts = list("lam_max"=1e-2,

+ "nobs"=200, # number of (bootstrap) observations for testing

+ "nextSample"="score", # sampling criterion

+ "ftol_abs"=1e-2, # lower bound on criterion value, triggers testing

+ "weights"=c(0.55), # constant weight factor

+ "eta"=c(0.025,0.075), # ignored, automatic adjustment of weights

+ "multfac"=2, # factor to multiply 'nsim' for during each local step

+ "test"=TRUE), # testing approximate root is enabled

+ method = c("qscoring","bobyqa","direct"), # restart methods

+ errType="max", # use max of kriging and CV error

+ iseed=297, cl=cl) # store seed and use given cluster object

The result of the quasi-likelihood estimation is

R> print(OPT)

Quasi-deviance:

2.414e-07

Estimate:

kappa R mu

2.1390e+01 6.8210e-02 2.9090e+00

Convergence: maximum evaluations reached.

maxeval

2.0000e+01

where we also can extract further information of the optimization results by

R> attr(OPT,"optInfo")

38 Quasi-likelihood with R

$x0

kappa R mu

27.50 0.13 3.00

$W

NULL

$theta

NULL

$last.global

[1] FALSE

$minimized

[1] TRUE

$useCV

[1] TRUE

$method

[1] "qscoring"

$nsim

[1] 50

$iseed

[1] 297

The matrix W is the quasi-information matrix at the parameter theta as the next to the final
parameter estimate. We can also inspect the final minimization results

R> OPT$final

Local method:

`qscoring`

Quasi-deviance:

2.4140e-07

Start Estimate Quasi-score

1 2.2590e+01 2.1390e+01 1.6920e-04

2 6.7940e-02 6.8210e-02 -5.6380e-03

3 2.7650e+00 2.9090e+00 1.4980e-03

Iterations............ 19

Markus Baaske 39

Status................ 6 (QFS_STEPMIN_REACHED)

Optimization stopped because minimum relative direction length was reached.

and, based on the above results, we use the final quasi-deviance approximation (and hence
QS approximation) to search for other local minimizers.

R> S0 <- searchMinimizer(OPTpar,OPTqsd,

+ method="bobyqa",cvm=OPT$cvm,verbose=TRUE)

Using method: bobyqa...

Successful minimization by: bobyqa [restarted] (status = 1)

If the user is unsatisfied with the estimation result, we can easily restart the main estimation
routine qle or start with a local quasi-scoring iteration from the last resulting parameter
without simulating the model.

R> QS <- qscoring(OPTqsd,OPTpar,

+ opts=list("slope_tol"=1e-4,"score_tol"=1e-3),

+ cvm=OPT$cvm)

The additionally estimated parameters have, however, not much improved as shown by the
following consistency checks.

R> par <- rbind("QS"=QS$par,"S0"=S0$par)

R> checkMultRoot(OPT,par=par)

kappa R mu minor det value |score_max| lamI_min lamIm_max

par 21.39 0.06821 2.909 1 0.9426 3.240 6.744479 -0.01951 0.3448

QS * 23.71 0.06308 2.609 0 1.7621 3.575 0.001422 -0.02263 0.3090

S0 23.70 0.06310 2.610 1 1.2344 3.574 0.030187 -0.02262 0.3090

which shows by the row with an asterisk that the corresponding parameter

R> QS$par

kappa R mu

23.70840 0.06308 2.60917

is the best one according to the criteria defined in Section 4.6. We can assess the goodness-
of-fit (see Section 4.7) of the estimated parameter based on a simulated sample of size nsim.

R> par0 <- OPT$par

R> obs0 <- OPTqsdobs

R> # testing `par0` with observed statistics `obs0`
R> # which can be replaced by the user and are obsolete below

R> Stest <- qleTest(OPT, # estimation results

40 Quasi-likelihood with R

+ par0=par0, # parameter to test

+ obs0=obs0, # alternative observed statistics

+ sim=simClust,cond=cond,nsim=100,

+ method=c("qscoring","bobyqa","direct"), # restart methods

+ opts=opts,control=list("ftol_abs"=1e-8), # minimization options

+ multi.start=1L,cl=cl,verbose=TRUE) # multi-start and parallel options

R> print(Stest)

Call:

qleTest(OPT, par0 = par0, obs0 = obs0, sim = simClust, cond = cond,

nsim = 100, method = c("qscoring", "bobyqa", "direct"), opts = qs.opts,

control = list(ftol_abs = 1e-08), multi.start = 1L, cl = cl,

verbose = TRUE)

Coefficients:

Estimate Std. Error RMSE Bias Mean

kappa 21.394313 3.2843479 3.5499350 1.3867108 22.781024

R 0.068207 0.0094823 0.0096558 0.0020543 0.070261

mu 2.909003 0.4993318 0.4968991 0.0083545 2.917357

Bootstrap Score-test:

s value Pr(>s)

2.4143e-07 4.45540e-01

Average quasi-score:

[1] -0.040720 0.922214 -0.019203

Predicted Std. Errors:

Average Estimate EF

kappa 6.43220e+00 5.92820e+00 6.69940e-01

R 2.25490e-02 1.77010e-02 8.33180e-01

mu 9.29720e-01 8.36020e-01 6.82480e-01

and stop the cluster:

R> stopCluster(cl)

The results show that the simulated data set provides not enough evidence to reject the null
hypothesis and thus we cannot distinguish the observed statistics from the simulated output

Markus Baaske 41

of the model. The last column shows the relative difference of the empirical and predicted
error at the estimated parameter as defined in (4.27).

Finally, a short error analysis shows that the predicted standard error

R> diag(attr(Stest,"qi"))^0.5

kappa R mu

5.9282 0.0177 0.8360

of the final parameter (see column Estimate) and its empirical error

R> sqrt(diag(attr(Stest,"msem")))

kappa R mu

3.549935 0.009656 0.496899

which is the square root of the diagonal terms of the mean squared error matrix of the re-
estimated parameters

R> attr(Stest,"msem")

kappa R mu

kappa 12.602038 3.837e-03 -0.895481

R 0.003837 9.323e-05 0.001454

mu -0.895481 1.454e-03 0.246909

have the same order of magnitude and compare well with each other.

Finally, we compare the simulation envelopes based on the summary statistics K̂ and ad-
ditionally Ĝ and F̂ . The plot in Figure 5 suggests a good agreement between the model
and the data for both estimation methods with slightly better results by the quasi-likelihood
estimation approach regarding the envelopes of Ĝ and F̂ .

6. Conclusion

The package qle provides methods for parameter estimation for a generic class of parametric
statistical models. The estimation approach is entirely simulation-based, in that moment
characteristics of the unknown distributions of the statistics are infered from model repli-
cations and approximated by a specific kriging approach. Therefore, as a preliminary step,
the construction of the kriging approximations requires an experimental design of randomly
generated parameters or points. Also, users can assess its predictive quality by error measures
specifically tailored to the needs of the QL estimation approach.

The estimation is based on finding a root of the QS vector but also subsumes other estimation
methods, e. g. simulated method of moments or least squares, based on the Mahalanobis
distance. Optionally, we could search for a suitable starting parameter for our QL estimation
approach by one of these methods first because the corresponding criterion is potentially easier

42 Quasi-likelihood with R

0.00 0.05 0.10 0.15 0.20 0.25

0.
0

0.
1

0.
2

0.
3

Minimum Contrast

r

K
(r

)

K̂obs(r)
K(r)
K̂hi(r)
K̂lo(r)

0.00 0.05 0.10 0.15 0.20 0.25

0.
0

0.
1

0.
2

0.
3

0.
4

QL estimation

r

K
(r

)

K̂obs(r)
K(r)
K̂hi(r)
K̂lo(r)

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0.
0

0.
2

0.
4

0.
6

0.
8

Minimum Contrast

r

G
(r

)

Ĝobs(r)
G(r)
Ĝhi(r)
Ĝlo(r)

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

QL estimation

r

G
(r

)

Ĝobs(r)
G(r)
Ĝhi(r)
Ĝlo(r)

0.00 0.05 0.10 0.15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Minimum Contrast

r

F
(r

)

F̂obs(r)
F(r)
F̂h i(r)
F̂lo(r)

0.00 0.05 0.10 0.15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

QL estimation

r

F
(r

)

F̂obs(r)
F(r)
F̂h i(r)
F̂lo(r)

Figure 5: Pointwise envelopes of the summary statistics K̂(r), Ĝ(r) and F̂ (r) based on sim-
ulated patterns of two fitted point process models for the redwood point pattern data: fitted
by the method of minimum contrast (left column) and quasi-likelihood (right column).

Markus Baaske 43

to compute and minimize, particularly for small sample sizes, over the parameter space. Also
we can use gradient based and derivative-free methods, see package nloptr (Ypma 2014),
for minimization of both criterion functions. On the contrary, the quasi-scoring algorithm is
solely used for root finding of the QS vector in conjunction with the QD as a monitor function.
Although the latter might suffer from numerical instabilities due to sparsely sampled regions
of the parameter space (especially in the beginning of the estimation procedure in which
case other methods are employed automatically) it usually needs only a fraction of iterations
compared to other general purpose solvers.

In practice, it might be especially advantageous to (temporarily) store or cache computa-
tional results of functions for a deeper analysis of estimation results or even errors. Setting
options("qle.cache"=TRUE) persistently stores (and reloads) any results of the following
functions:

simQLdata, prefitCV, mahalDist, quasiDeviance,

fitCov, fitSIRFk, updateCovModels, getQLmodel

using package digest (Eddelbuettel 2017) for hash digests of R objects to create file names.
Further, several options are available for estimating the variance matrix of the statistics (e. g.
using package expm (Goulet, Dutang, Maechler, Firth, Shapira, and Stadelmann 2017) for
matrix logarithm transformations) as well as two types of prediction variances (of sample
mean values of statistics). These are used mainly in order to account for the simulation error
of the statistics while searching for potential candidates of the unknown model parameter
(either sampling from a multivariate normal based on the package mvtnorm (Genz, Bretz,
Miwa, Mi, Leisch, Scheipl, and Hothorn 2017) or uniform distribution). Finally, the user can
perform a Monte Carlo hypothesis test in order to assess the goodness-of-fit of the parametric
model which does not involve additional simulations (except for generating ”observations“
according to the fitted statistical model) and provides predicted and empirically estimated
standard errors of the model parameter.

7. Computational details

The package qle is implemented in R with extensions written in C/C++. It can be found on the
Comprehensive R Archive Network at (CRAN, http://CRAN.R-project.org/package=qle)
and also is hosted on R-Forge at (http://r-forge.r-project.org/projects/qle). It uses
a NAMESPACE and depends on the package parallel (R Core Team 2017) and nloptr (Ypma
2014) among others (see above). To reproduce the examples of the vignette, which are also
provided as separate R source files, we recommend the package spatstat. The package qle
automatically compiles when installed.

Acknowledgments

The author would like to thank the German Science Foundation (DFG) for financial support
of this research within the framework of the priority program ”Life∞“ (SPP 1466).

References

http://CRAN.R-project.org/package=qle
http://r-forge.r-project.org/projects/qle

44 Quasi-likelihood with R

Baaske M, Ballani F, Illgen A (2018). “On the estimation of parameters of a spheroid dis-
tribution from planar sections.” Spatial Statistics, 26, 83 – 100. ISSN 2211-6753. doi:

https://doi.org/10.1016/j.spasta.2018.07.003. URL http://www.sciencedirect.

com/science/article/pii/S2211675318300630.

Baaske M, Ballani F, van den Boogaart K (2014). “A quasi-likelihood approach to parameter
estimation for simulatable statistical models.” Image Analysis & Stereology, 33(2), 107–119.
ISSN 1854-5165. URL http://www.ias-iss.org/ojs/IAS/article/view/1088.

Baddeley A, Turner R, Mateu J, Bevan A (2005). “spatstat: An R Package for Analyzing
Spatial Point Patterns.” Journal of Statistical Software, 12(6), 1–42. URL http://www.

jstatsoft.org/v12/i06/.

Carnell R (2016). lhs: Latin Hypercube Samples. R package version 0.14, URL https:

//CRAN.R-project.org/package=lhs.

Chaussé P (2010). “Computing Generalized Method of Moments and Generalized Empirical
Likelihood with R.” Journal of Statistical Software, 34(11), 1–35. URL http://www.

jstatsoft.org/v34/i11/.

Chiles JP, Delfiner P (1999). Geostatistics: modelling spatial uncertainty. J. Wiley & Sons,
New York.

Conn AR, Scheinberg K, Vicente LN (2009). Introduction to Derivative-Free Optimization.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA. ISBN 0898716683,
9780898716689.

Cressie NAC (1993). Statistics for spatial data. J. Wiley & Sons, New York.

Dryden IL, Koloydenko A, Zhou D (2009). “Non-Euclidean Statistics for Covariance Matrices,
with Applications to Diffusion Tensor Imaging.” The Annals of Applied Statistics, 3(3),
1102–1123. ISSN 19326157. URL http://www.jstor.org/stable/30242879.

Eddelbuettel D (2017). digest: Create Compact Hash Digests of R Objects. R package version
0.6.12, URL https://CRAN.R-project.org/package=digest.

Efron B, Tibshirani R (1994). An Introduction to the Bootstrap. Chapman & Hall/CRC
Monographs on Statistics & Applied Probability. Taylor & Francis. ISBN 9780412042317.

Genz A, Bretz F, Miwa T, Mi X, Leisch F, Scheipl F, Hothorn T (2017). mvtnorm: Multivari-
ate Normal and t Distributions. R package version 1.0-6, URL https://CRAN.R-project.

org/package=mvtnorm.

Godambe V (1991). Estimating Functions. Oxford science publications. Clarendon Press.
ISBN 9780198522287.

Golub GH, Loan CFV (1996). Matrix Computations. JHU Press, Baltimore, MD, USA.

Goulet V, Dutang C, Maechler M, Firth D, Shapira M, Stadelmann M (2017). expm: Matrix
Exponential, Log, ’etc’. R package version 0.999-2, URL http://CRAN.R-project.org/

package=expm.

http://dx.doi.org/https://doi.org/10.1016/j.spasta.2018.07.003
http://dx.doi.org/https://doi.org/10.1016/j.spasta.2018.07.003
http://www.sciencedirect.com/science/article/pii/S2211675318300630
http://www.sciencedirect.com/science/article/pii/S2211675318300630
http://www.ias-iss.org/ojs/IAS/article/view/1088
http://www.jstatsoft.org/v12/i06/
http://www.jstatsoft.org/v12/i06/
https://CRAN.R-project.org/package=lhs
https://CRAN.R-project.org/package=lhs
http://www.jstatsoft.org/v34/i11/
http://www.jstatsoft.org/v34/i11/
http://www.jstor.org/stable/30242879
https://CRAN.R-project.org/package=digest
https://CRAN.R-project.org/package=mvtnorm
https://CRAN.R-project.org/package=mvtnorm
http://CRAN.R-project.org/package=expm
http://CRAN.R-project.org/package=expm

Markus Baaske 45

Hansen LP (1982). “Large Sample Properties of Generalized Method of Moments Estima-
tors.” Econometrica, 50(4), 1029–1054. URL https://ideas.repec.org/a/ecm/emetrp/

v50y1982i4p1029-54.html.

Heyde CC (1997). Quasi-likelihood and its applications: a general approach to optimal pa-
rameter estimation. Springer, New York.

Jakobsson S, Patriksson M, Rudholm J, Wojciechowski A (2010). “A method for simulation
based optimization using radial basis functions.” Optimization and Engineering, 11(4),
501–532. ISSN 1573-2924. doi:10.1007/s11081-009-9087-1.

Jesus J, Chandler RE (2011). “Estimating functions and the generalized method of moments.”
Interface Focus, 1(6), 871–885. ISSN 2042-8898. doi:10.1098/rsfs.2011.0057.

Jin R, Chen W, Sudjianto A (2002). “On sequential sampling for global metamodeling in
engineering design.” In Proceedings of the ASME Design Engineering Technical Conference,
volume 2, pp. 539–548.

Jones D (2001). “A taxonomy of global optimization methods based on response surfaces.” J.
Global Optim., 21, 345–383.

Jones DR, Schonlau M, Welch WJ (1998). “Efficient Global Optimization of Expensive Black-
Box Functions.” Journal of Global Optimization, 13(4), 455–492. ISSN 1573-2916. doi:

10.1023/A:1008306431147.

Kleijnen JPC, Beers WCMv (2004). “Application-driven sequential designs for simulation
experiments: Kriging metamodelling.” Journal of the Operational Research Society, 55(8),
876–883. ISSN 1476-9360. URL http://dx.doi.org/10.1057/palgrave.jors.2601747.

Kleijnen JPC, van Beers WCM (2009). “Kriging metamodeling in simulation: A review.” Eur.
J. Oper. Res., 192, 707–716.

Liang KY, Zeger SL (1986). “Longitudinal data analysis using generalized linear models.”
Biometrika, 73(1), 13. doi:10.1093/biomet/73.1.13.

Liang KY, Zeger SL (1995). “Inference based on estimating functions in the presence of
nuisance parameters.” Statist. Sci., 10, 158–173.

Marchant BP, Lark RM (2007). “Optimized Sample Schemes for Geostatistical Sur-
veys.” Mathematical Geology, 39(1), 113–134. ISSN 1573-8868. doi:10.1007/

s11004-006-9069-1. URL http://dx.doi.org/10.1007/s11004-006-9069-1.

McFadden D (1989). “A Method of Simulated Moments for Estimation of Discrete Response
Models without Numerical Integration.” Econometrica, 57(5), 995–1026. URL http://

EconPapers.repec.org/RePEc:ecm:emetrp:v:57:y:1989:i:5:p:995-1026.

Meckesheimer M, Booker AJ, Barton RR, Simpson TW (2002). “Computationally Inexpensive
Metamodel Assessment Strategies.” AIAA Journal, 40(10), 2053–2060. ISSN 0001-1452.
doi:10.2514/2.1538.

Müller W (2001). Collecting Spatial Data: Optimum Design of Experiments for Random
Fields. Contributions to statistics. Physica-Verlag. ISBN 9783790813333.

https://ideas.repec.org/a/ecm/emetrp/v50y1982i4p1029-54.html
https://ideas.repec.org/a/ecm/emetrp/v50y1982i4p1029-54.html
http://dx.doi.org/10.1007/s11081-009-9087-1
http://dx.doi.org/10.1098/rsfs.2011.0057
http://dx.doi.org/10.1023/A:1008306431147
http://dx.doi.org/10.1023/A:1008306431147
http://dx.doi.org/10.1057/palgrave.jors.2601747
http://dx.doi.org/10.1093/biomet/73.1.13
http://dx.doi.org/10.1007/s11004-006-9069-1
http://dx.doi.org/10.1007/s11004-006-9069-1
http://dx.doi.org/10.1007/s11004-006-9069-1
http://EconPapers.repec.org/RePEc:ecm:emetrp:v:57:y:1989:i:5:p:995-1026
http://EconPapers.repec.org/RePEc:ecm:emetrp:v:57:y:1989:i:5:p:995-1026
http://dx.doi.org/10.2514/2.1538

46 Quasi-likelihood with R

Myers RH, Montgomery DC (1995). Response Surface Methodology: Process and Product
in Optimization Using Designed Experiments. 1st edition. John Wiley & Sons, Inc., New
York, NY, USA. ISBN 0471581003.

Osborne MR (1992). “Fisher’s method of scoring.” Int. Stat. Rev., 60, 99–117.

Pukelsheim F (2006). Optimal Design of Experiments (Classics in Applied Mathematics)
(Classics in Applied Mathematics, 50). Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA. ISBN 0898716047.

Qi L, Racine JS (2007). Nonparametric econometrics: theory and practice. Princeton Univer-
sity Press.

R Core Team (2017). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Regis RG, Shoemaker CA (2007). “A Stochastic Radial Basis Function Method for the Global
Optimization of Expensive Functions.” INFORMS Journal on Computing, 19(4), 497–509.
ISSN 1091-9856. doi:10.1287/ijoc.1060.0182.

Ripley B (2009). Stochastic Simulation. Wiley Series in Probability and Statistics. Wiley.
ISBN 9780470317389.

Ripley BD (2015). gee: An R Generalized Estimation Equation Solver. R package version
4.13-19, URL http://CRAN.R-project.org/package=gee.

Sacks J, Stiller SB, Welch WJ (1989a). “Designs for computer experiments.” Technometrics,
31, 41–47.

Sacks J, Welch WJ, Mitchel TJ, Wynn HP (1989b). “Design and analysis of computer exper-
iments.” Statist. Sci., 4, 409–423.

Shao J, Tu D (1995). The Jackknife and Bootstrap. Springer. ISBN 978-0-387-94515-6.

van Beers WCM, Kleijnen JPC (2003). “Kriging for Interpolation in Random Simulation.” The
Journal of the Operational Research Society, 54(3), 255–262. ISSN 01605682, 14769360.
URL http://www.jstor.org/stable/4101619.

Wackernagel H (2003). Multivariate geostatistics. Springer, Berlin.

Wedderburn RWM (1974). “Quasi-likelihood functions, generalized linear models, and the
Gauss-Newton method.” Biometrika, 61(3), 439. doi:10.1093/biomet/61.3.439.

Ypma J (2014). nloptr: R interface to NLopt. R package version 1.0.4, URL http://CRAN.

R-project.org/package=nloptr.

Affiliation:

Markus Baaske
Faculty of Mathematics and Computer Science
Friedrich Schiller University Jena

https://www.R-project.org/
http://dx.doi.org/10.1287/ijoc.1060.0182
http://CRAN.R-project.org/package=gee
http://www.jstor.org/stable/4101619
http://dx.doi.org/10.1093/biomet/61.3.439
http://CRAN.R-project.org/package=nloptr
http://CRAN.R-project.org/package=nloptr

Markus Baaske 47

07743 Jena, Germany
Email: markus.baaske@uni-jena.de

mailto:markus.baaske@uni-jena.de

	Introduction
	Quasi-likelihood approach
	Background on black box optimization
	Main contribution

	Basic quasi-likelihood theory
	Simulated quasi-likelihood estimation method
	Algorithmic overview
	Approximately solving the quasi-score equation
	Estimating the error of the quasi-score approximation
	Termination conditions

	Extensions and modifications
	Select local evaluation points
	Select global evaluation points
	Variance matrix estimation
	Alternative estimation of prediction errors
	Initial design validation
	Numerical consistency of solutions
	Monte Carlo hypothesis testing

	Estimation with qle in R
	Main functions
	Options for parallel processing
	M/M/1 queue
	Estimating the parameters of a normal distribution
	Fitting a Matérn cluster point process model

	Conclusion
	Computational details

