
Quick introduction of randtoolbox

Christophe Dutang and Petr Savicky

October 24, 2024

Random simulation or Monte-Carlo methods rely on the fact we have access to random numbers.
Even if nowadays having random sequence is no longer a problem, for many years producing random
numbers was a big challenge. According to Ripley (1990), simulation started in 1940s with physi-
cal devices. Using physical phenomena to get random numbers is referred in the literature as true
randomness.

However, in our computers, we use more frequently pseudo-random numbers. These are defined
as deterministic sequences, which mimic a sequence of i.i.d. random numbers chosen from the uniform
distribution on the interval [0, 1]. Random number generators used for this purpose receive as input an
initial information, which is called a user specified seed, and allow to obtain different output sequences
of numbers from [0, 1] depending on the seed. If no seed is supplied by the user, we use the machine
time to initiate the sequence.

Since we use pseudo-random numbers as a proxy for random numbers, an important question is,
which properties the RNG should have to work as a good replacement of the truly random numbers.
Essentially, we need that the applications, which we have, produce the same results, or results from
the same distribution, no matter, whether we use pseudo-random numbers or truly random numbers.
Hence, the required properties may be formulated in terms of computational indistinguishability of the
output of the generator from the truly random numbers, if the seed is not known. The corresponding
mathematical theory is developed in complexity theory, see http://www.wisdom.weizmann.ac.il/

~oded/c-indist.html.
The best known random number generators are used for cryptographic purposes. These generators

are chosen so that there is no known procedure, which could distinguish their output from truly random
numbers within practically available computation time, if the seed is not known. For simulations, this
requirement is usually relaxed. However, even for simulation purposes, considering the hardness of
detecting the difference between the generated numbers and truly random ones is a good measure of the
quality of the generator. In particular, the well-known empirical tests of random number generators
such as Diehard1 or TestU01 L’Ecuyer & Simard (2007) are based on relatively easy to compute
statistics, which allow to distinguish the output of bad generators from truly random numbers. More
about this may be found in section Examples of distinguishing from truly random numbers.

A simple parameter of a generator is its period. Recent generators have huge periods, which
cannot be exhausted by any practical computation. Another parameter, suitable mainly for linear
generators, is so called equidistribution. This parameter measures the uniformity of several most
significant bits of several consecutive numbers in the sequence over the whole period. If a generator
has good equidistribution, then we have a reasonable guarantee of practical independence of several
consecutive numbers in the sequence. For linear generators, determining equidistribution properties
may be done by efficient algebraic algorithms and does not need to really generate the whole period.

Ripley (1990) lists the following properties

• output numbers are almost uniformly distributed,

• output numbers are independent,

• the period between two identical numbers is sufficiently long,

1The Marsaglia Random Number CDROM including the Diehard Battery of Tests of Randomness, Research Sponsored
by the National Science Foundation (Grants DMS-8807976 and DMS-9206972), copyright 1995 George Marsaglia.

1

http://www.wisdom.weizmann.ac.il/~oded/c-indist.html
http://www.wisdom.weizmann.ac.il/~oded/c-indist.html


1 THE RUNIF INTERFACE 2

• unless a seed is given, output numbers should be unpredictable.

The statistical software R provides several random number generators described in ’?RNGkind()’.
The default generator is called Mersenne-Twister and achieves high quality, although it fails some
tests based on XOR operation. Still, there are reasons to provide better and more recent RNGs as
well as classic statistical tests to quantify their properties. The rest of this chapter is two-folded:
first we present the use of RNGs through the runif() interface, second we present the same use
with dedicated functions (not modifying base R default RNGs). See the overall man page with the
command ?randtoolbox.

1 The runif interface

In R, the default setting for random generation are (i) uniform numbers are produced by the Mersenne-
Twister algorithm and (ii) normal numbers are computing through the numerical inversion of the
standard normal distribution function. This can be checked by the following code

> RNGkind()

[1] "Wichmann-Hill" "Inversion"

[3] "Rejection"

The function RNGkind() can also be used to set other RNGs, such as Wichmann-Hill, Marsaglia-
Multicarry, Super-Duper, Knuth-TAOCP or Knuth-TAOCP-2002 plus a user-supplied RNG. See the
help page for details.

Random number generators provided by R extension packages are set using RNGkind("user-supplied").
The package randtoolbox assumes that this function is not called by the user directly. Instead, it is
called from the functions set.generator() and put.description() used for setting some of a larger
collection of the supported generators.

The function set.generator() eases the process to set a new RNG in R. Here is one short example
on how to use set.generator() (see the man page for detailed explanations).

> RNGkind()

[1] "Wichmann-Hill" "Inversion"

[3] "Rejection"

> library(randtoolbox)

> set.generator("MersenneTwister", initialization="init2002", resolution=53, seed=1)

> str(get.description())

List of 4

$ name : chr "MersenneTwister"

$ parameters: Named chr [1:2] "init2002" "53"

..- attr(*, "names")= chr [1:2] "initialization" "resolution"

$ state : int [1:625] 624 1 1812433254 -581806939 -1185793151 64984499 -902309212 446538473 -1665206540 -1841621738 ...

$ authors : chr "M. Matsumoto, T. Nishimura, 1998"

> RNGkind()

[1] "user-supplied" "Inversion"

[3] "Rejection"

> runif(10)

[1] 0.00011 0.30233 0.09234 0.02739

[5] 0.87814 0.95789 0.68650 0.83463

[9] 0.98886 0.13003



2 DEDICATED FUNCTIONS 3

Random number generators in randtoolbox are represented at the R level by a list containing
mandatory components name, parameters, state and possibly an optional component authors.
The function set.generator() internally creates this list from the user supplied information and
then runs put.description() on this list in order to really initialize the generator for the functions
runif() and set.seed(). If set.generator() is called with the parameter only.dsc=TRUE, then
the generator is not initialized and only its description is created. If the generator is initialized, then
the function get.description() may be used to get the actual state of the generator, which may be
stored and used later in put.description() to continue the sequence of the random numbers from
the point, where get.description() was called. This may be used, for example, to alternate between
the streams of random numbers generated by different generators.

From the runif() interface, you can use any other linear congruential generator with modulus at
most 264 and multiplier, which is either a power of 2 or the product of the modulus and the multiplier
is at most 264. The current version of the package also allows to use Well-Equidistributed Long-period
Linear generators (WELL).

To get back to the original setting of RNGs in R, we just need to call set.generator with default

RNG.

> set.generator("default")

> RNGkind()

[1] "Mersenne-Twister"

[2] "Inversion"

[3] "Rejection"

2 Dedicated functions

The other way to use RNGs is to directly use dedicated functions. For instance to get the previous
example, we can simply use

> setSeed(1)

> congruRand(10, mod = 2^31-1, mult = 16807, incr = 0)

[1] 7.8e-06 1.3e-01 7.6e-01 4.6e-01

[5] 5.3e-01 2.2e-01 4.7e-02 6.8e-01

[9] 6.8e-01 9.3e-01

where setSeed function initiates the seed for RNGs implemented in randtoolbox and congruRand

calls the congruential generator.
They are many other RNGs provided by RNGs in addition to linear congruential generator, WELL

generators, SFMersenne-Twister generators and Knuth-TAOCP double version. See ?pseudo.randtoolbox
for details.

This package also implements usual quasi random generators such as Sobol or Halton sequences
(see ?quasi.randtoolbox). See the second chapter for an explanation on quasi RNGs.



REFERENCES 4

References

L’Ecuyer, P. & Simard, R. (2007), ‘Testu01: A c library for empirical testing of random number
generators’, ACM Trans. on Mathematical Software 33(4), 22. 1

Ripley, B. D. (1990), Stochastic Simulation, John Wiley & Sons. 1


	The runif interface
	Dedicated functions

