
Vignette: restorepoint

Sebastian Kranz

December 17, 2012

Department of Mathematics and Economics, University of Ulm

Abstract

This package allows to debug R functions via restore points instead

of break points. When called inside a function, a restore point stores

all local variables. These can be restored for later debugging purposes

by simply pasting the body of the function inside the R console. This

vignette briefly illustrates the use of restore points and compares ad-

vantages and drawbacks compared to break points.

1 A simple example of debugging with restore

points

Consider a function swap.in.vector that shall split a vector at a given position
and then swap the left and right part of the vector. Here is an example of a
call to a correct implementation:

swap.in.vector(1:5,3)

[1] 3 4 5 1 2

Here is a faulty implementation that we want to debug:

library(restorepoint)

 sebastian.kranz@uni-ulm.de

1

1 A SIMPLE EXAMPLE OF DEBUGGING WITH RESTORE POINTS 2

library(restorepoint)

swap.in.vector = function(vec, swap.ind) {
restore.point("swap.in.vector")

left = vec[1:(swap.ind - 1)]

right = vec[swap.ind:nrow(vec)]

c(right, left)

}
swap.in.vector(1:10, 4)

Error: argument of length 0

The first line in the function specifies a restore point.

restore.point called inside a function

When restore.point(name) is called inside a function, it stores the current
values of all local variables under the specified name. In the example, these
local variable are vec and swap.ind and the name is “swap.in.vector”.

restore.point is called directly in the R console

When restore.point is called directly in the R console the following happens:

1. The previously stored local variables are copied into a new environment
that has the global environment as enclosing environment

2. The default R console is replaced by the restore point console. In this
console R commands are evaluated in the environment created in the
first step. To leave the restore point console and go back to the standard
R console, one just has to press ESC.

In effect, we can now debug the function by simply copy & pasting the interior
of the function (or parts of it) including the first line. (Using RStudio, we can
just mark all lines and press Ctrl-Enter) We can inspect the variables and code
by simply typing any desired command into the R console.

restore.point("swap.in.vector")

Restored: swap.ind,vec

left = vec[1:(swap.ind-1)]

right = vec[swap.ind:nrow(vec)]

Error: argument of length 0

c(right,left)

Error: object ’right’ not found

1 A SIMPLE EXAMPLE OF DEBUGGING WITH RESTORE POINTS 3

The error occurred in the third line. We can inspect the variables in more
detail to narrow down the error.

swap.ind

[1] 4

vec

[1] 1 2 3 4 5 6 7 8 9 10

swap.ind:nrow(vec)

Error: argument of length 0

nrow(vec)

NULL

There is the culprit. The command nrow returns NULL for a vector. We want
to use length(vec) or NROW(vec) instead.

Try an alternative formulation

length(vec)

[1] 10

We can correct the code in our script and directly test it by pasting again
the whole function body. There is no need to call the function again, since
the parameter from the previous function call are still stored under the name
“swap.in.vector”.

Test the inside of the function by copy & paste it into the R console.

restore.point("swap.in.vector")

Restored: swap.ind,vec

left = vec[1:(swap.ind-1)]

right = vec[swap.ind:length(vec)]

c(right,left)

[1] 4 5 6 7 8 9 10 1 2 3

The corrected function seems to work fine so far (indeed there is an error left
that we remove in Section 3). Pressing ESC returns to the normal evaluation
mode of the R Console.

2 WHY I PREFER RESTORE POINTS OVER BREAK POINTS 4

2 Why I prefer restore points over break points

A standard tool to debug a function is to use a break point. In R this can
be performed via a call to browser() inside the function (e.g. at the same
position where we would call restore.point). When during execution of the
function, browser() is called, the R console immediately changes into an inter-
active debugging mode that allows to step through the code and enter any R
expressions. In contrast, when restore.point is called inside the function there
are no direct visible effects: the debugging mode starts afterward, when we
decide to paste the body of the function into the R console.

I personally prefer restore points over break points for the following reasons:

1. When debugging nested function calls, handling several break points can
become very tedious, since the program flow is interrupted with every
break point. Despite using traceback(), it is often not clear where exactly
the error has occured. As a consequence, I tend to set too many break
points and the program flow is interrupted too often.

2. A related point. When I want to turn off invocation of the browser, I
comment out #browser() manually and source again the function body
again. That can become quite tedious. When using restore points, I
typically just keep the calls to restore.point in the code even if they seem
not necessary at the moment. Calls to restore.point are simply not very
obtrusive. They just make silently a copy of the data. While there is
some memory overhead and execution may slow down a bit, but usually
I find that negligible.

3. The interactive browser used by browser() has a own set of command,
e.q. pressing “Q” quits the browser or pressing “n” debugs the next
function. For that reason, one cannot always simply copy & paste R
code into the browser. In contrast, the only special key in the debug
mode of restore point is Escape, which brings you back to the standard
R console. The restore point browser makes debugging via copy & paste
from your R script (or in RStudio, select code and press CTRL+Enter)
much easier.

4. One is automatically thrown out the debugging mode of browser() once
a line with an error is pasted. This does not happen in the restore point
browser. I find it much more convenient to stay in the debug mode. It
allows me to paste all the code until an error has occurred and to check
only afterward the values of local expressions.

5. I often would like to restart from the break point after I changed some-
thing in the function, to test whether the new code works. But with
nested function calls, e.g. inside an optimization procedure, for which
an error only occurred under certain parameter constellations, it can
sometimes be quite time consuming until the break point at which the
error has occurred is reached again after a a restart. This problem does

3 THE RESTORE POINT CONSOLE 5

not arise for restore points, I can always restart at the restore point and
test my modified function body.

3 The restore point console

We described above that when objects are restored, future commands are
evaluated in the restore point console. The main difference to the standard R
console is that expressions are not evaluated in the global environment, but
in an environment that emulates the environment inside the function that we
want to debug. Here are some special points:

 It is possible to call functions with ..., e.g. f(...) from the restore point
console. The values of the ... are the values with which the original
function that shall be debugged has been called.

 If an error is caused in the restore point console, by default a stack trace
as in traceback() is shown. I just find that convenient.

 If you type as a single expression the function restore.point in the restore
point console, the corresponding objects are restored and the restore
point console changes to the corresponding environment. This does not
happen when restore.point is called as part of more complex expressions
inside { }, e.g. inside a function, a loop, or an if clause. Then the local
objects are stored under the specified name.

 I programmed the restore point console such that if the command source
is called, as a single command, then the restore point console automat-
ically quits and returns to the standard console. The reason is that I
typically source a file again, when I am finished with debugging, but I
want then automatically return to the standard R console without hav-
ing to press ESC before. (In later version, this behavior shall become
optional).

4 Some examples of using restore points

4.1 Where to set restore points

When writing a new function, I tend to always add a restore point in the first
line, with name equal to the function name.

my.fun = function(par1, par2 = 0) {
restore.point("my.fun")

... code here ...

}

4 SOME EXAMPLES OF USING RESTORE POINTS 6

Unlike break points (see discussion below), restore points don’t interrupt pro-
gram execution. Even though most errors are found quickly, there are also
often errors that remain hidden for a while. Therefore having restore points
in all functions can be quite convenient, in particular in complex code.

One does not have to set restore points at the beginning of a function, but can
put them also somewhere else in a function.

4.2 Nested function calls

Restore points are particularly useful when debugging nested function calls and
in situations in which errors arise only under specific parameter constellations
(possibly randomly drawn ones). Here is an example of a faulty function that
shall draw 10 random swap.point for a given vector and print the swapped
version.

Randomly choose 10 swap points

f = function(v) {
restore.point("f")

for (i in 1:10) {
rand.swap.point = sample(1:length(vec), 1)

sw = swap.in.vector(v, rand.swap.point)

print(sw)

}
}

set.seed(12345)

f(v = 1:5)

[1] NA NA NA 5 1 2 3 4 5 NA NA

[1] NA NA NA NA 5 1 2 3 4 5 NA NA NA

[1] NA NA NA 5 1 2 3 4 5 NA NA

[1] NA NA NA NA 5 1 2 3 4 5 NA NA NA

[1] 5 1 2 3 4

[1] 2 3 4 5 1

[1] 4 5 1 2 3

[1] NA 5 1 2 3 4 5

[1] NA NA NA 5 1 2 3 4 5 NA NA

[1] NA NA NA NA NA 5 1 2 3 4 5 NA NA NA NA

The result looks strange. There is a mistake either in function f or in swap.in.vector
or in both. It is convenient to stop the execution whenever an obviously wrong
result is encountered. For this purpose, we modify f by stopping execution if
the length of the result is different than the length of the original vector. We
also add a restore.point with name “f.in.loop” inside the loop.

4 SOME EXAMPLES OF USING RESTORE POINTS 7

Randomly choose 10 swap points

f = function(v) {
restore.point("f")

for (i in 1:10) {
rand.swap.point = sample(1:length(v), 1)

sw = swap.in.vector(v, rand.swap.point)

print(sw)

restore.point("f.in.loop")

stopifnot(length(sw) == length(v))

}
}

set.seed(12345)

f(v = 1:5)

[1] 4 5 1 2 3

[1] 5 1 2 3 4

[1] 4 5 1 2 3

[1] 5 1 2 3 4

[1] 3 4 5 1 2

[1] 1 2 3 4 5 1

Error: length(sw) == length(v) is not TRUE

The error may have occurred in swap.in.vector or in f or in both. By restoring
the restore point in swap.in.vector, we first have a look at the parameters of
the last function call before execution has been stopped.

#swap.in.vector = function(vec,swap.ind) {
restore.point("swap.in.vector")

Restored: swap.ind,vec

swap.ind

[1] 1

vec

[1] 1 2 3 4 5

vec has different values than the parameter v=1:5

with which we have called f

5 KNOWN CAVEATS AND ISSUES 8

We seem to call swap.in.vector, with a swap.point that is larger than the
vector!. This suggests that there is an error in the function f. We restore our
restore point “f.in.loop” and examine the local variables.

restore.point("f.in.loop")

Restored: i,rand.swap.point,sw,v

v

[1] 1 2 3 4 5

rand.swap.point

[1] 1

There must be a mistake when rand.swap.point is drawn

rand.swap.point = sample(1:length(vec), 1)

Indeed, we use the wrong variable: vec instead of v Corrected:

rand.swap.point = sample(1:length(vec), 1)

It can be helpful to include a restore point within the for loop in order to
analyze the values of the local variables before the error has been thrown.

5 Known Caveats and Issues

5.1 Variables in enclosing environments are neither stored

nor restored

So far only the local variables of a function are stored and restored. If the
function uses variables from enclosing environments, e.g. the global environ-
ment, and those variables have changed, restore.point may not replicate the
behavior of the original function call. I plan to add a feature that allows to
mitigate this restriction.

