Definitions of ψ-Functions Available in Robustbase

Manuel Koller and Martin Mächler

July 29, 2020

Contents

1 Monotone ψ-Functions 2
 1.1 Huber 3

2 Redescenders 3
 2.1 Bisquare 4
 2.2 Hampel 5
 2.3 GGW 6
 2.4 LQQ 7
 2.5 Optimal 8
 2.6 Welsh 9

Preamble

Unless otherwise stated, the following definitions of functions are given by Maronna et al. (2006, p. 31), however our definitions differ sometimes slightly from theirs, as we prefer a different way of standardizing the functions. To avoid confusion, we first define ψ- and ρ-functions.

Definition 1 A ψ-function is a piecewise continuous function $\psi : \mathbb{R} \to \mathbb{R}$ such that

1. ψ is odd, i.e., $\psi(-x) = -\psi(x) \forall x$,

2. $\psi(x) \geq 0$ for $x \geq 0$, and $\psi(x) > 0$ for $0 < x < x_r := \sup\{\tilde{x} : \psi(\tilde{x}) > 0\}$ ($x_r > 0$, possibly $x_r = \infty$).

3* Its slope is 1 at 0, i.e., $\psi'(0) = 1$.

Note that ‘3*’ is not strictly required mathematically, but we use it for standardization in those cases where ψ is continuous at 0. Then, it also follows (from 1.) that $\psi(0) = 0$, and we require $\psi(0) = 0$ also for the case where ψ is discontinuous in 0, as it is, e.g., for the M-estimator defining the median.

Definition 2 A ρ-function can be represented by the following integral of a ψ-function,

$$\rho(x) = \int_0^x \psi(u)du,$$

which entails that $\rho(0) = 0$ and ρ is an even function.

A ψ-function is called redescending if $\psi(x) = 0$ for all $x \geq x_r$ for $x_r < \infty$, and x_r is often called rejection point. Corresponding to a redescending ψ-function, we define the function $\tilde{\rho}$, a version of ρ standardized such as to attain maximum value one. Formally,

$$\tilde{\rho}(x) = \rho(x)/\rho(\infty).$$
Note that $\rho(\infty) = \rho(x_r) \equiv \rho(x) \forall |x| \geq x_r$. $\tilde{\rho}$ is a ρ-function as defined in Maronna et al. (2006) and has been called χ function in other contexts. For example, in package robustbase, \texttt{Mchi(x, *)} computes $\tilde{\rho}(x)$, whereas \texttt{Mpsi(x, *, deriv=-1)} ("(-1)-st derivative" is the primitive or antiderivative) computes $\rho(x)$, both according to the above definitions.

Note: An alternative slightly more general definition of redescending would only require $\rho(\infty) := \lim_{x \to \infty} \rho(x)$ to be finite. E.g., "Welsh" does not have a finite rejection point, but does have bounded ρ, and hence well defined $\rho(\infty)$, and we can use it in \texttt{lmrob}().

Weakly redescending ψ functions

Note that the above definition does require a finite rejection point x_r. Consequently, e.g., the score function $s(x) = -f'(x)/f(x)$ for the Cauchy ($= t_1$) distribution, which is $s(x) = 2x/(1 + x^2)$ and hence non-monotone and "re descends" to 0 for $x \to \pm \infty$, and $\psi_C(x) := s(x)/2$ also fulfills $\psi_C'(0) = 1$, but it has $x_r = \infty$ and hence ψ_C is not a redescending ψ-function in our sense. As they appear e.g. in the MLE for t_ν, we call ψ-functions fulfilling $\lim_{x \to \infty} \psi(x) = 0$ weakly redescending. Note that they’d naturally fall into two sub categories, namely the one with a finite ρ-limit, i.e. $\rho(\infty) := \lim_{x \to \infty} \rho(x)$, and those, as e.g., the t_ν score functions above, for which $\rho(x)$ is unbounded even though $\rho' = \psi$ tends to zero.

1 Monotone ψ-Functions

Montone ψ-functions lead to convex ρ-functions such that the corresponding M-estimators are defined uniquely.

Historically, the “Huber function” has been the first ψ-function, proposed by Peter Huber in Huber (1964).

1 E-mail Oct. 18, 2014 to Manuel and Werner, proposing to change the definition of “redescending”.
1.1 Huber

The family of Huber functions is defined as,

\[
\rho_k(x) = \begin{cases}
\frac{1}{2}x^2 & \text{if } |x| \leq k \\
\frac{k(|x| - \frac{k}{2})}{k} & \text{if } |x| > k
\end{cases}
\]

\[
\psi_k(x) = \begin{cases}
x & \text{if } |x| \leq k \\
k \text{ sign}(x) & \text{if } |x| > k
\end{cases}
\]

The constant \(k \) for 95% efficiency of the regression estimator is 1.345.

> plot(huberPsi, x., ylim=c(-1.4, 5), leg.loc="topright", main=FALSE)

![Figure 1: Huber family of functions using tuning parameter \(k = 1.345 \).](image)

2 Redescenders

For the MM-estimators and their generalizations available via `lmrob()` (and for some methods of `nlrob()`), the \(\psi \)-functions are all redescending, i.e., with finite “rejection point” \(x_r = \sup\{t; \psi(t) > 0\} < \infty \). From `lmrob`, the psi functions are available via `lmrob.control`, or more directly, `.Mpsi.tuning.defaults`.

> names(.Mpsi.tuning.defaults)

[1] "huber" "bisquare" "welsh" "ggw" "lqq" "optimal" "hampel"

and their \(\psi, \rho, \psi' \), and weight function \(w(x) := \psi(x)/x \), are all computed efficiently via C code, and are defined and visualized in the following subsections.
2.1 Bisquare

Tukey’s bisquare (aka “biweight”) family of functions is defined as,

\[
\hat{\rho}_k(x) = \begin{cases}
1 - \left(1 - \left(\frac{x}{k}\right)^2\right)^3 & \text{if } |x| \leq k \\
1 & \text{if } |x| > k
\end{cases},
\]

with derivative \(\hat{\rho}'_k(x) = 6\psi_k(x)/k^2\) where,

\[
\psi_k(x) = x \left(1 - \left(\frac{x}{k}\right)^2\right)^2 \cdot I_{\{\|x\| \leq k\}}.
\]

The constant \(k\) for 95% efficiency of the regression estimator is 4.685 and the constant for a breakdown point of 0.5 of the S-estimator is 1.548. Note that the exact default tuning constants for M- and MM- estimation in robustbase are available via `.Mpsi.tuning.default()` and `.Mchi.tuning.default()`, respectively, e.g., here,

```r
> print(c(k.M = .Mpsi.tuning.default("bisquare"),
+       k.S = .Mchi.tuning.default("bisquare")), digits = 10)

k.M  k.S
4.685061 1.547640
```

and that the p.psiFun(.) utility is available via

```r
> source(system.file("xtraR/plot-psiFun.R", package = "robustbase", mustWork=TRUE))
> p.psiFun(x., "biweight", par = 4.685)
```

Figure 2: Bisquare family functions using tuning parameter \(k = 4.685\).
2.2 Hampel

The Hampel family of functions (Hampel et al., 1986) is defined as,

\[
\tilde{\rho}_{a,b,r}(x) = \begin{cases} \\
\frac{1}{2}x^2/C & |x| \leq a \\
\left(\frac{1}{2}a^2 + a(|x| - a)\right) / C & a < |x| \leq b \\
\frac{a}{2} \left(2b - a + (|x| - b) \left(1 + \frac{r-|x|}{r-b}\right)\right) / C & b < |x| \leq r \\
1 & r < |x| \\
\end{cases}
\]

\[
\psi_{a,b,r}(x) = \begin{cases} \\
x & |x| \leq a \\
a \text{sign}(x) & a < |x| \leq b \\
a \text{sign}(x) \frac{r-|x|}{r-b} & b < |x| \leq r \\
0 & r < |x| \\
\end{cases}
\]

where \(C := \rho(\infty) = \rho(r) = \frac{a}{2} \left(2b - a + (r - b)\right) = \frac{a}{2} (b - a + r) \).

As per our standardization, \(\psi \) has slope 1 in the center. The slope of the redescending part \((x \in [b, r])\) is \(-a/(r - b)\). If it is set to \(-\frac{1}{2}\), as recommended sometimes, one has

\[
r = 2a + b.
\]

Here however, we restrict ourselves to \(a = 1.5k, b = 3.5k,\) and \(r = 8k\), hence a redescending slope of \(-\frac{1}{3}\), and vary \(k\) to get the desired efficiency or breakdown point.

The constant \(k\) for 95% efficiency of the regression estimator is 0.902 (0.9016085, to be exact) and the one for a breakdown point of 0.5 of the S-estimator is 0.212 (i.e., 0.2119163).

![Image of Hampel family of functions](image.png)

Figure 3: Hampel family of functions using tuning parameters 0.902 · (1.5, 3.5, 8).
2.3 GGW

The Generalized Gauss-Weight function, or \textit{ggw} for short, is a generalization of the Welsh \(\psi \)-function (subsection 2.6). In Koller and Stahel (2011) it is defined as,

\[
\psi_{a,b,c}(x) = \begin{cases}
 x & |x| \leq c \\
 \exp\left(-\frac{1}{2}\frac{(|x|-c)^b}{a}\right) x & |x| > c
\end{cases}
\]

Our constants, fixing \(b = 1.5 \), and minimal slope at \(-\frac{1}{2}\), for 95% efficiency of the regression estimator are \(a = 1.387 \), \(b = 1.5 \) and \(c = 1.063 \), and those for a breakdown point of 0.5 of the S-estimator are \(a = 0.204 \), \(b = 1.5 \) and \(c = 0.296 \):

```r
> cT <- rbind(cc1 = psi.ggw.findc(ms = -0.5, b = 1.5, eff = 0.95),
+ cc2 = psi.ggw.findc(ms = -0.5, b = 1.5, bp = 0.50)); cT

cc1 0 1.3863620 1.5 1.0628199 4.7773893
cc2 0 0.2036739 1.5 0.2959131 0.3703396
```

Note that above, \(cc[1] = 0 \), \(cc[5] = \rho(\infty) \), and \(cc[2:4] = (a, b, c) \). To get this from \((a, b, c) \), you could use

```r
> ipsi.ggw <- psi2ipsi("GGW") # = 5
> ccc <- c(0, cT[,2:4], 1)
> integrate(.Mpsi, 0, Inf, ccc=ccc, ipsi=ipsi.ggw)$value # = rho(Inf)

[1] 4.777389
```

```r
> p.psiFun(x, "GGW", par = c(-.5, 1, .95, NA))
```

Figure 4: GGW family of functions using tuning parameters \(a = 1.387 \), \(b = 1.5 \) and \(c = 1.063 \).
2.4 LQQ

The “linear quadratic quadratic” ψ-function, or lqq for short, was proposed by Koller and Stahel (2011). It is defined as,

$$\psi_{b,c,s}(x) = \begin{cases}
x & |x| \leq c \\
\text{sign}(x) \left(|x| - \frac{s}{2b} (|x| - c)^2 \right) & c < |x| \leq b + c \\
\text{sign}(x) \left(c + b - \frac{bs}{x} + \frac{x}{2} (\frac{x^2}{2} - ax) \right) & b + c < |x| \leq a + b + c \\
0 & \text{otherwise}, \end{cases}$$

where

$$\tilde{x} := |x| - b - c \quad \text{and} \quad a := \frac{2c + 2b - bs}{s - 1}. \quad (3)$$

The parameter c determines the width of the central identity part. The sharpness of the bend is adjusted by b while the maximal rate of descent is controlled by s ($s = 1 - \min_x \psi'(x) > 1$). From (3), the length a of the final descent to 0 is a function of b, c and s.

If the minimal slope is set to $-\frac{1}{2}$, i.e., $s = 1.5$, and $b/c = 3/2 = 1.5$, the constants for 95% efficiency of the regression estimator are $b = 1.473$, $c = 0.982$ and $s = 1.5$, and those for a breakdown point of 0.5 of the S-estimator are $b = 0.402$, $c = 0.268$ and $s = 1.5$.

> cT <- rbind(cc1 = .psi.lqq.findc(ms= -0.5, b.c = 1.5, eff=0.95, bp=NA),
+ cc2 = .psi.lqq.findc(ms= -0.5, b.c = 1.5, eff=NA , bp=0.50))
> colnames(cT) <- c("b", "c", "s"); cT

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>c</td>
<td>s</td>
</tr>
<tr>
<td>cc1</td>
<td>1.4734061</td>
<td>0.9822707</td>
</tr>
<tr>
<td>cc2</td>
<td>0.4015457</td>
<td>0.2678971</td>
</tr>
</tbody>
</table>

Figure 5: LQQ family of functions using tuning parameters $b = 1.473$, $c = 0.982$ and $s = 1.5$.
2.5 Optimal

The optimal ψ function as given by Maronna et al. (2006, Section 5.9.1),

\[\psi_c(x) = \text{sign}(x) \left(-\frac{\varphi'(|x|) + c}{\varphi(|x|)} \right)_+ , \]

where \(\varphi \) is the standard normal density, \(c \) is a constant and \(t_+ := \max(t, 0) \) denotes the positive part of \(t \).

Note that the robustbase implementation uses rational approximations originating from the robust package’s implementation. That approximation also avoids an anomaly for small \(x \) and has a very different meaning of \(c \).

The constant for 95% efficiency of the regression estimator is 1.060 and the constant for a breakdown point of 0.5 of the S-estimator is 0.405.

Figure 6: ‘Optimal’ family of functions using tuning parameter \(c = 1.06 \).
2.6 Welsh

The Welsh ψ function is defined as,

\[
\tilde{\rho}_k(x) = 1 - \exp\left(-\left(\frac{x}{k}\right)^2/2\right)
\]
\[
\psi_k(x) = k^2 \tilde{\rho}_k'(x) = x \exp\left(-\left(\frac{x}{k}\right)^2/2\right)
\]
\[
\psi'_k(x) = (1 - \left(\frac{x}{k}\right)^2) \exp(-\left(\frac{x}{k}\right)^2/2)
\]

The constant k for 95% efficiency of the regression estimator is 2.11 and the constant for a breakdown point of 0.5 of the S-estimator is 0.577.

Note that GGW (subsection 2.3) is a 3-parameter generalization of Welsh, matching for $b = 2$, $c = 0$, and $a = k^2$ (see R code there):

```r
> ccc <- c(0, a = 2.11^2, b = 2, c = 0, 1)
> (ccc[5] <- integrate(.Mpsi, 0, Inf, ccc=ccc, ipsi = 5)$value) # = rho(Inf)
[1] 4.4521
> stopifnot(all.equal(Mpsi(x., ccc, "GGW"), ## psi[ GGW ](x; a=k^2, b=2, c=0) ==
+ Mpsi(x., 2.11, "Welsh")))## psi[Welsh](x; k)
```

Figure 7: Welsh family of functions using tuning parameter $k = 2.11$.

References

9